Variation in DNA methylation between individuals has been shown to be influenced by both genetic and environmental factors. However, the relative impact of genetic and non-genetic factors on DNA methylation patterns across the mammalian genome has not been systematically studied. We performed whole-genome methylation analysis in two inbred mouse strains, revealing striking differences in the global distribution of DNA methylation. Although global methylation patterns were indistinguishable for most genomic features, a significant increase in the number of unmethylated CpG-island promoters and first exons was observed between strains. Experiments using F1 reciprocal hybrid strains demonstrated that the genotype of the mother dictated global DNA methylation patterns. Cross-fostering experiments ruled out a postnatal maternal effect on these differences and suggested that they were driven by a prenatal maternal effect, possibly via differential deposition of maternal gene products into the oocyte or uterine environment. These data demonstrate that maternal effects have a major impact on global DNA methylation patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.