It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS-induced tumorigenesis. Prdx1 ablation increased the susceptibility to Ras-induced breast cancer. We, therefore, investigated the role of Prdx1 in regulating oncogenic Ras effector pathways. We found Akt hyperactive in fibroblasts and mammary epithelial cells lacking Prdx1. Investigating the nature of such elevated Akt activation established a novel role for Prdx1 as a safeguard for the lipid phosphatase activity of PTEN, which is essential for its tumour suppressive function. We found binding of the peroxidase Prdx1 to PTEN essential for protecting PTEN from oxidation-induced inactivation. Along those lines, Prdx1 tumour suppression of Ras-or ErbB-2-induced transformation was mediated mainly via PTEN.
Peroxiredoxins (Prdxs) are a family of small (22-27 kDa) nonseleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H(2)O(2), organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than "just simple peroxidases". This hypothesis has been discussed elegantly in recent review articles, considering "over"-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (C(P)) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid, which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones with questionable H(2)O(2)-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H(2)O(2) regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H(2)O(2) modulating cell signaling via Prdxs by discussing: (1) the activity of Prdxs towards H(2)O(2); (2) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; (3) the availability of Prdxs reducing systems, such as thioredoxin and sulfiredoxin and lastly, (4) Prdx1 interacting signaling molecules.
Background: Epithelial to mesenchymal transition (EMT) correlates with increased metastatic potential and poor prognosis. Results: Secreted eHsp90 induces EMT, matrix metalloproteinase activity and cell motility. Conclusion: EMT inducing activity of eHsp90 provides a mechanistic basis for its tumorigenic and metastatic function. Significance: The requirement for eHsp90 in supporting tumorigenic events indicates that targeting eHsp90 may represent a therapeutic approach to improve prostate cancer patient survival.
8p11 myeloproliferative syndrome (EMS) is a hematopoietic stem cell disorder characterized by myeloid hyperplasia and non-Hodgkin's lymphoma with chromosomal translocations fusing several genes, most commonly ZNF198, to fibroblast growth factor receptor-1 (FGFR1). However, patients with BCR-FGFR1 fusion present with typical chronic myeloid leukemia (CML). We demonstrate that ZNF198-FGFR1 induces EMS-like disease in mice, with myeloproliferation and T lymphoma arising from common multipotential progenitors. Mutation of FGFR1 Tyr766 attenuates both myeloid and lymphoid diseases, identifying phospholipase C-gamma1 as a downstream effector. Bcr-FGFR1 binds Grb2 via Bcr Tyr177 and induces CML-like leukemia in mice, whereas Bcr-FGFR1/Y177F lacks Grb2 binding and causes EMS-like disease. These results implicate different signaling pathways originating from both kinase and fusion partner in the pathogenesis of CML and EMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.