To identify early metabolic abnormalities in non-insulin-dependent diabetes mellitus (NIDDM), we measured sensitivity to insulin and insulin secretion in 26 first-degree relatives of patients with NIDDM and compared these subjects both with 14 healthy control subjects with no family history of NIDDM and with 19 patients with NIDDM. The euglycemic insulin-clamp technique, indirect calorimetry, and infusion of [3-3H]glucose were used to assess insulin sensitivity. Total-body glucose metabolism was impaired in the first-degree relatives as compared with the controls (P less than 0.01). The defect in glucose metabolism was almost completely accounted for by a defect in nonoxidative glucose metabolism (primarily the storage of glucose as glycogen). The relatives with normal rates of metabolism (mean +/- SEM, 1.81 +/- 0.27 mg per kilogram of body weight per minute) and impaired rates (1.40 +/- 0.22 mg per kilogram per minute) in oral glucose-tolerance tests had the same degree of impairment in glucose storage as compared with healthy control subjects (3.76 +/- 0.55 mg per kilogram per minute; P less than 0.01 for both comparisons). During hyperglycemic clamping, first-phase insulin secretion was lacking in patients with NIDDM (P less than 0.01) and severely impaired in their relatives with impaired glucose tolerance (P less than 0.05) as compared with control subjects; insulin secretion was normal in the relatives with normal glucose tolerance. We conclude that impaired glucose metabolism is common in the first-degree relatives of patients with NIDDM, despite their normal results on oral glucose-tolerance tests. Both insulin resistance and impaired insulin secretion are necessary for the development of impaired glucose tolerance in these subjects.
The aim of the study was 1) to establish the prevalence of GAD antibodies (GADab) in a population-based study of type 2 diabetes in western Finland, 2) to genetically and phenotypically characterize this subgroup, and 3) to provide a definition for latent autoimmune diabetes in adults (LADA). The prevalence of GADab was 9.3% among 1,122 type 2 diabetic patients, 3.6% among 558 impaired glucose tolerance (IGT) subjects, and 4.4% among 383 nondiabetic control subjects. Islet antigen 2 antibodies (IA2ab) or islet cell antibodies were detected in only 0.5% of the GADab- patients. The GADab+ patients had lower fasting C-peptide concentrations (median [interquartile range]: 0.46 [0.45] vs. 0.62 [0.44] nmol/l, P = 0.0002) and lower insulin response to oral glucose compared with GADab- patients. With respect to features of the metabolic syndrome, the GADab+ patients had lower systolic (140 [29.1] vs. 148 [26.0] mmHg, P = 0.009) and diastolic (79.2 [17.6] vs. 81.0 [13.1] mmHg, P = 0.030) blood pressure values, as well as lower triglyceride concentrations (1.40 [1.18] vs. 1.75 [1.25] mmol/l, P = 0.003). GADab+ men had a lower waist-to-hip ratio compared with GADab- patients. Compared with GADab- patients and control subjects, the GADab+ patients had an increased frequency HLA-DQB1*0201/0302 (13 vs. 4%; P = 0.002) and other genotypes containing the *0302 allele (22 vs. 12%; P = 0.010). However, the frequency of these high-risk genotypes was significantly lower in GADab+ type 2 patients than in type 1 diabetes of young or adult onset (0201/0302 or 0302/X: 36 vs. 66 vs. 64%, P < 0.001). The GADab+ type 2 group did not differ from control subjects with respect to genotypes containing the protective DQB1-alleles *0602 or *0603, nor with respect to the type 1 high-risk genotype in the IDDM1 (Hph1 +/+). We conclude that GADab+ patients differ from both GADab- type 2 diabetic patients and type 1 diabetic patients with respect to beta-cell function, features of the metabolic syndrome, and type 1 diabetes susceptibility genes. Further, we propose that LADA be defined as GADab positivity (>5 relative units) in patients older than 35 years at onset of type 2 diabetes.
AIPmut pituitary adenomas have clinical features that may negatively impact treatment efficacy. Predisposition for aggressive disease in young patients, often in a familial setting, suggests that earlier diagnosis of AIPmut pituitary adenomas may have clinical utility.
Identification of individuals at high risk of developing type 2 diabetes is a prerequisite for prevention of the disease. We therefore studied risk factors predicting type 2 diabetes in the Botnia Study in western Finland. A total of 2,115 nondiabetic individuals were prospectively followed with repeated oral glucose tolerance tests. After a median follow-up of 6 years, 127 (6%) subjects developed diabetes. A family history of diabetes (hazard ratio [HR] 2.2, P ؍ 0.008), BMI (HR for comparison of values below or above the median 2.1, P < 0.001), waist-to-height index (2.3, P < 0.001), insulin resistance (2.1, P ؍ 0.0004), and -cell function adjusted for insulin resistance (2.7, P < 0.0001) predicted diabetes. Marked deterioration in -cell function with modest changes in insulin sensitivity was observed during the transition to diabetes. The combination of FPG >5.6 mmol/l, BMI >30 kg/m 2 , and family history of diabetes was a strong predictor of diabetes (3.7, P < 0.0001). Of note, using FPG >6.1 mmol/l or 2-h glucose >7.8 mmol/l did not significantly improve prediction of type 2 diabetes. In conclusion, a marked deterioration in -cell function precedes the onset of type 2 diabetes. These individuals can be identified early by knowledge of FPG, BMI, and family history of diabetes. Diabetes 54: 166 -174, 2005
To investigate the mechanisms of insulin resistance in obesity and noninsulin-dependent diabetes mellitus (NIDDM), we examined oxidative and nonoxidative pathways of free fatty acid (FFA) and glucose metabolism in 14 lean and 17 obese (with normal oral glucose tolerance) nondiabetic subjects and in 8 lean and 8 obese subjects with NIDDM. FFA and glucose metabolism were measured using the sequential insulin clamp technique in combination with indirect calorimetry and infusion of [3-3H]glucose and [1-14C]palmitate. Obesity was characterized by enlarged fat mass, which correlated positively with the plasma FFA concentration (r = 0.62; P less than 0.01). FFA metabolism was less sensitive to insulin in obese than in lean nondiabetic subjects, but this defect could be overcome by increasing the plasma insulin concentration. NIDDM patients showed normal sensitivity to the inhibitory action of insulin on FFA metabolism; however, maximal suppression by insulin was impaired. The combination of obesity and NIDDM was associated with a further enhancement of reesterification of FFA than observed in either condition alone. In both obesity and NIDDM, the dose-response curve for suppression of hepatic glucose production by insulin was impaired. While obesity was primarily characterized by reduced sensitivity to the stimulatory action of insulin on oxidative and nonoxidative pathways of glucose metabolism, resistance to the effect of insulin on glucose metabolism in NIDDM was characterized by a reduced maximal response. The combination of obesity and NIDDM further impaired the sensitivity of liver glucose output and glucose oxidation to insulin. The hypothesis is advanced that in uncomplicated obesity, increased availability and oxidation of FFA leads, by the FFA/glucose cycle, to the impairment in glucose utilization. In NIDDM, on the other hand, the defect in glucose utilization is primary, and the enhanced rate of FFA oxidation may represent a compensatory phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.