BackgroundRidge regression models can be used for predicting heterosis and hybrid performance. Their application to mRNA transcription profiles has not yet been investigated. Our objective was to compare the prediction accuracy of models employing mRNA transcription profiles with that of models employing genome-wide markers using a data set of 98 maize hybrids from a breeding program.ResultsWe predicted hybrid performance and mid-parent heterosis for grain yield and grain dry matter content and employed cross validation to assess the prediction accuracy. Prediction with a ridge regression model using random effects for mRNA transcription profiles resulted in similar prediction accuracies than employing the model to DNA markers. For hybrids, of which none of the parental inbred lines was part of the training set, the ridge regression model did not reach the prediction accuracy that was obtained with a model using transcriptome-based distances.ConclusionWe conclude that mRNA transcription profiles are a promising alternative to DNA markers for hybrid prediction, but further studies with larger data sets are required to investigate the superiority of alternative prediction models.
Background: The expected genetic variance is an important criterion for the selection of crossing partners which will produce superior combinations of genotypes in their progeny. The advent of molecular markers has opened up new vistas for obtaining precise predictors for the genetic variance of a cross, but fast prediction methods that allow plant breeders to select crossing partners based on already available data from their breeding programs without complicated calculations or simulation of breeding populations are still lacking. The main objective of the present study was to demonstrate the practical applicability of an analytical approach for the selection of superior cross combinations with experimental data from a barley breeding program. We used genome-wide marker effects to predict the yield means and genetic variances of 14 DH families resulting from crosses of four donor lines with five registered elite varieties with the genotypic information of the parental lines. For the validation of the predicted parameters, the analytical approach was extended by the masking variance as a major component of phenotypic variance. The predicted parameters were used to fit normal distribution curves of the phenotypic values and to conduct an Anderson-Darling goodness-of-fit test for the observed phenotypic data of the 14 DH families from the field trial.Results: There was no evidence that the observed phenotypic values deviated from the predicted phenotypic normal distributions in 13 out of 14 crosses. The correlations between the observed and the predicted means and the observed and predicted variances were r = 0.95 and r = 0.34, respectively. After removing two crosses with downward outliers in the phenotypic data, the correlation between the observed and predicted variances increased to r = 0.76. A ranking of the 14 crosses based on the sum of predicted mean and genetic variance identified the 50% best crosses from the field trial correctly.Conclusions: We conclude that the prediction accuracy of the presented approach is sufficiently high to identify superior crosses even with limited phenotypic data. We therefore expect that the analytical approach based on genome-wide marker effects is applicable in a wide range of breeding programs.
mRNA transcription profiles are an alternative to DNA markers for predicting hybrid performance. Our objective was to investigate their prediction accuracy in an unbalanced maize data set. We focused on the effectiveness of preselecting a core set of genes for transcription profiling and on the comparison of prediction models. A total of 254 hybrids were evaluated for grain yield and grain dry matter content. The mRNA transcripts of a core set of 2k genes and the genotype of 1k AFLP markers were assessed in the parental lines. Predictions based on transcriptome‐based distances determined from the 2k core set of genes resulted in prediction accuracies below 0.5 and could not reach the high accuracies observed with a 46k micro‐array in earlier studies. Predictions based on ridge regression resulted in prediction accuracies greater 0.6. Only marginal differences were observed in the prediction accuracies of mRNA transcripts compared with AFLPs. We conclude that mRNA transcription profiles are suitable for hybrid prediction with ridge‐regression models in unbalanced designs, even if limited resources allow only transcription profiling of a core set of genes.
Genomic prediction has been established in breeding programs to predict the genotypic values of selection candidates without phenotypic data. First results in wheat showed that genomic predictions can also prove useful to select among material for which phenotypic data are available. In such a scenario, the selection candidates are evaluated with low intensity in the field. Genome-wide effects are estimated from the field data and are then used to predict the genotypic values of the selection candidates. The objectives of our simulation study were to investigate the correlations r(y, g) between genomic predictions y and genotypic values g and to compare these with the correlations r(p, g) between phenotypic values p and genotypic values g. We used data from a yield trial of 250 barley lines to estimate variance components and genome-wide effects. These parameters were used as basis for simulations. The simulations included multiple crossing schemes, population sizes, and varying sizes of the components of the masking variance. The genotypic values g of the selection candidates were obtained by genetic simulations, the phenotypic values p by simulating evaluation in the field, and the genomic predictions y by RR-BLUP effect estimation from the phenotypic values. The correlations r(y, g) were greater than the correlations r(p, g) for all investigated scenarios. We conclude that using genomic predictions for selection among candidates tested with low intensity in the field can proof useful for increasing the efficiency of barley breeding programs.
Background: Older people are reported to be prone to imbalances between cobalamin and folate status with possible adverse effects on health. This longitudinal study investigates dynamics and interactions of cobalamin and folate status in a cohort of community-dwelling older adults by considering possible influencing factors. Methods: In total, 332 subjects ≥ 60 years were investigated over a mean observation period of 12 years. Data collection included serum cobalamin, folate and creatinine, dietary intakes of cobalamin, folate and alcohol, use of supplements, body composition, smoking behavior, and diseases. Linear mixed-effects models with repeated measurements were used to investigate the influence of variables on serum cobalamin and folate. Results: At baseline, median cobalamin intake exceeded the dietary reference value (DRV), while median folate intake was considerably below DRV. In most subjects, serum concentrations of both vitamins were within reference ranges. For serum cobalamin, apart from supplement use (Parameter estimate [95% confidence interval]: 130.17 [53.32, 207.01]), the main positive predictor was serum folate (4.63 [2.64, 6.62]). For serum folate, serum creatinine (10.85 [4.85, 16.86]), use of supplements (7.86 [5.05, 10.67]), serum cobalamin (0.01 [< 0.01, 0.01]), and dietary folate intake (0.02 [0.01, 0.03]) were positive predictors. No main effects of age, sex, body composition, alcohol intake or smoking were found after adjusting for simultaneous inference. Conclusions: Advancing age, per se, is no risk factor for a decline in serum concentrations of cobalamin or folate in subjects ≥ 60 years. Suboptimal folate intake may limit the function of folate regarding the supply of methyl groups for methylation of cobalamin and subsequent creatine biosynthesis. The positive association of serum creatinine with folate deserves further exploration with regard to its possible relevance for maintaining energy dependent functional integrity in the course of ageing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.