Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large families of surface molecules, which include trans-sialidases, mucins, gp63s, and a large novel family (>1300 copies) of mucin-associated surface protein (MASP) genes. Analyses of the T. cruzi, T. brucei, and Leishmania major (Tritryp) genomes imply differences from other eukaryotes in DNA repair and initiation of replication and reflect their unusual mitochondrial DNA. Although the Tritryp lack several classes of signaling molecules, their kinomes contain a large and diverse set of protein kinases and phosphatases; their size and diversity imply previously unknown interactions and regulatory processes, which may be targets for intervention.
The Trypanosoma brucei flagellum is unusual as it is attached along the cell body and contains, in addition to an apparently conventional axoneme, a structure called the paraflagellar rod, which is essential for cell motility. Here, we investigated flagellum behaviour in normal and mutant trypanosome cell lines where expression of genes encoding various axoneme proteins (PF16, PF20, DNAI1, LC2) had been silenced by RNAi. First, we show that the propulsive wave (normally used for forward motility) is abolished in the absence of outer dynein arms, whereas the reverse wave (normally used for changing direction) still occurs. Second, in contrast to Chlamydomonas - but like metazoa, the central pair adopts a fixed orientation during flagellum beating. This orientation becomes highly variable in central-pair- and outer-dynein-arm-mutants. Third, the paraflagellar rod contributes to motility by facilitating three-dimensional wave propagation and controlling cell shape. Fourth, motility is required to complete the last stage of cell division in both insect and bloodstream stages of the parasite. Finally, our study also reveals the conservation of molecular components of the trypanosome flagellum. Coupled to the ease of reverse genetics, it raises the interest of trypanosomes as model organisms to study cilia and flagella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.