Epileptogenic tumors affecting children and young adults are a morphologically diverse collection of neuroepithelial neoplasms that, as a group, exhibit varying levels of glial and/or neuronal differentiation. Recent advances in molecular profiling technology, including comprehensive DNA sequencing and methylation analysis, have enabled the application of more precise and biologically relevant classification schemes to these tumors. In this report, we describe a morphologically and molecularly distinct epileptogenic neoplasm, the polymorphous low-grade neuroepithelial tumor of the young (PLNTY), which likely accounts for a sizable portion of oligodendroglioma-like tumors affecting the pediatric population. Characteristic microscopic findings most notably include infiltrative growth, the invariable presence of oligodendroglioma-like cellular components, and intense immunolabeling for cluster of differentiation 34 (CD34). Moreover, integrative molecular profiling reveals a distinct DNA methylation signature for PLNTYs, along with frequent genetic abnormalities involving either B-Raf proto-oncogene (BRAF) or fibroblast growth factor receptors 2 and 3 (FGFR2, FGFR3). These findings suggest that PLNTY represents a distinct biological entity within the larger spectrum of pediatric, low-grade neuroepithelial tumors.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-016-1639-9) contains supplementary material, which is available to authorized users.
Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.
The FGFR1 gene encoding fibroblast growth factor receptor 1 has emerged as a frequently altered oncogene in the pathogenesis of multiple low-grade neuroepithelial tumor (LGNET) subtypes including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor (DNT), rosette-forming glioneuronal tumor (RGNT), and extraventricular neurocytoma (EVN). These activating FGFR1 alterations in LGNET can include tandem duplication of the exons encoding the intracellular tyrosine kinase domain, in-frame gene fusions most often with TACC1 as the partner, or hotspot missense mutations within the tyrosine kinase domain (either at p.N546 or p.K656). However, the specificity of these different FGFR1 events for the various LGNET subtypes and accompanying genetic alterations are not well defined. Here we performed comprehensive genomic and epigenomic characterization on a diverse cohort of 30 LGNET with FGFR1 alterations. We identified that RGNT harbors a distinct epigenetic signature compared to other LGNET with FGFR1 alterations, and is uniquely characterized by FGFR1 kinase domain hotspot missense mutations in combination with either PIK3CA or PIK3R1 mutation, often with accompanying NF1 or PTPN11 mutation. In contrast, EVN harbors its own distinct epigenetic signature and is characterized by FGFR1-TACC1 fusion as the solitary pathogenic alteration. Additionally, DNT and pilocytic astrocytoma are characterized by either kinase domain tandem duplication or hotspot missense mutations, occasionally with accompanying NF1 or PTPN11 mutation, but lacking the accompanying PIK3CA
Angiocentric glioma, a rare brain neoplasm with features of ependymal differentiation, has only recently been recognized as a distinct clinicopathological entity. To date, all reported cases have involved tumors in the cerebral hemispheres, and the majority have presented with seizures. The authors report the case of a 5-year-old girl who presented with several cranial neuropathies and mild gait disturbance. An exophytic neoplasm arising from the posterior midbrain and causing obstructive hydrocephalus was identified, and surgical resection revealed a neoplasm with features of angiocentric glioma.
Leptomeningeal dissemination in children is typical of high-grade, and occasionally low-grade, neoplasms. Rare cases of widely disseminated oligodendroglia-like leptomeningeal tumors, sometimes with associated spinal cord lesions, have been described that respond to treatment and follow an indolent course. Whether these lesions represent an established tumor category or are a unique entity remains to be established. We present 9 pediatric cases of such diffuse leptomeningeal neuroepithelial tumors (DLNT), 8 with assessment of 2 common genetic alterations seen in oligodendrogliomas, 1p and 19q chromosomal deletions and isocitrate dehydrogenase-1 (IDH1) R132H mutations. Four patients were male and 5 female, with a mean age at presentation of 4 years (range, 2 to 7 y). All presented with signs of increased intracranial pressure and diffuse contrast enhancement of the leptomeninges by magnetic resonance imaging. Three had a cervical or upper thoracic spinal cord tumor, and another had a small cerebellar lesion. Leptomeningeal biopsies showed a thickened and fibrotic arachnoid infiltrated by monotonous cells with round nuclei and prominent perinuclear clearing. All cases were strongly immunoreactive for S100 protein, and most showed faint granular synaptophysin reactivity. Six of 8 cases showed deletions of chromosome arm 1p by fluorescence in situ hybridization, 2 of which also had loss of 19q. None of the lesions reacted with IDH1-R132H antibodies. Although the clinicopathologic features show overlap of these DLNT lesions with oligodendroglioma and extraventricular neurocytoma, they do not exactly match either one, suggesting that DLNTs are a distinct tumor entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.