SummaryRegulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4, 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [7, 8, 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [10, 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [7, 8, 9], that could promote tumor growth.
Activation of procaspase-9, a key component of the apoptosis mechanism, requires the interaction of its caspase recruitment domain (CARD) with the CARD in the adaptor protein Apaf-1. Using nuclear magnetic resonance spectroscopy and mutagenesis we have determined the structure of the CARD from Apaf-1 and the residues important for binding the CARD in procaspase-9. Apaf-1's CARD contains seven short alpha-helices with the core six helices arranged in an antiparallel manner. Residues in helix 2 have a central role in mediating interaction with procaspase-9 CARD. This interaction surface is distinct from that proposed based on the structure of the CARD from RAIDD, but is coincident with that of the structurally similar FADD death effector domain and the Apaf-1 CARD interface identified by crystallographic studies.
Introduction The rise of HIV-1 drug resistance to non-nucleoside reverse-transcriptase inhibitors (NNRTI) threatens antiretroviral therapy's long-term success (ART). NNRTIs will remain an essential drug for the management of HIV-1 due to safety concerns associated with integrase inhibitors. We fitted a dynamic transmission model to historical data from 2000 to 2018 in nine countries of southern Africa to understand the mechanisms that have shaped the HIV-1 epidemic and the rise of pretreatment NNRTI resistance. Methods We included data on HIV-1 prevalence, ART coverage, HIV-related mortality, and survey data on pretreatment NNRTI resistance from nine southern Africa countries from a systematic review, UNAIDS and World Bank. Using a Bayesian hierarchical framework, we developed a dynamic transmission model linking data on the HIV-1 epidemic to survey data on NNRTI drug resistance in each country. We estimated the proportion of resistance attributable to unregulated, off-programme use of ART. We examined each national ART programme's vulnerability to NNRTI resistance by defining a fragility index: the ratio of the rate of NNRTI resistance emergence during first-line ART over the rate of switching to second-line ART. We explored associations between fragility and characteristics of the health system of each country. Results The model reliably described the dynamics of the HIV-1 epidemic and NNRTI resistance in each country. Predicted levels of resistance in 2018 ranged between 3.3% (95% credible interval 1.9–7.1) in Mozambique and 25.3% (17.9–33.8) in Eswatini. The proportion of pretreatment NNRTI resistance attributable to unregulated antiretroviral use ranged from 6% (2–14) in Eswatini to 64% (26–85) in Mozambique. The fragility index was low in Botswana (0.01; 0.0–0.11) but high in Namibia (0.48; 0.16–10.17), Eswatini (0.64; 0.23–11.8) and South Africa (1.21; 0.83–9.84). The combination of high fragility of ART programmes and high ART coverage levels was associated with a sharp increase in pretreatment NNRTI resistance. Conclusions This comparison of nine countries shows that pretreatment NNRTI resistance can be controlled despite high ART coverage levels. This was the case in Botswana, Mozambique, and Zambia, most likely because of better HIV care delivery, including rapid switching to second-line ART of patients failing first-line ART.
Background Vaccination may control the COVID-19 pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. Methods We studied an outbreak at a nursing home in Switzerland where vaccination uptake of mRNA vaccines against SARS-CoV-2 was 82% among residents as of Jan 21/2021. After a vaccinated symptomatic HCW was diagnosed with COVID-19 on Feb 22, we did an outbreak investigations in house A (47 residents, 37 HCWs) using SARS-CoV-2-specific PCR in nasopharyngeal swabs. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. Results We identified 17 individuals with positive PCR tests; ten residents (five vaccinated) and seven HCWs (three vaccinated). Median age among residents was 86 years (interquartile range [IQR] 70-90) and 49 years (IQR 29-59) among HCWs. Among the five vaccinated residents, 60% had mild disease and had 40% no symptoms, whereas all five unvaccinated residents had mild to severe disease and two died. The vaccine effectiveness for the prevention of infection among the residents was 73.0% (95% Cl 24.7-90.1). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals upon re-exposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (p=0.012). Transmission networks indicated four likely or possible transmissions from vaccinated to other individuals, and 12 transmission events from unvaccinated individuals. Conclusions COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.