Basophils have been recently recognized to play important roles in type 2 immune responses during allergies and parasitic infection, largely due to the development of novel tools for the in vivo study of these cells. As such, the genetically-engineered MCPT8 mouse line has been used to specifically deplete basophils following treatment with diphtheria toxin (DT). In this study, we showed that DT-injected MCPT8 mice exhibited a striking decrease of eosinophils and neutrophils in skin when subjected to a hapten fluorescein isothiocyanate (FITC)-induced allergic contact dermatitis (ACD) experimental protocol. Unexpectedly, we found that loss of skin eosinophils and neutrophils was not due to a lack of basophil-mediated recruitment, as DT injection caused a systemic reduction of eosinophils and neutrophils in MCPT8 mice in a time-dependent manner. Furthermore, we found that hematopoietic stem-cell-derived granulocyte-macrophage progenitors (GMPs) expressed MCPT8 gene, and that these cells were depleted upon DT injection. Finally, we optimized a protocol in which a low-dose DT achieved a better specificity for depleting basophils, but not GMPs, in MCPT8 mice, and demonstrate that basophils do not play a major role in recruiting eosinophils and neutrophils to ACD skin. These data provide new and valuable information about functional studies of basophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.