Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth in vitro on amphoterin-coated substrates. Ligation of RAGE by two other ligands, advanced glycation end products or amyloid -peptide, is suggested to play a role in cell injury mechanisms involving cellular oxidant stress and activation of the transcription factor NF-B. However, the RAGE signaling pathways in neurite outgrowth and cell injury are largely unknown. Here we show that transfection of RAGE to neuroblastoma cells induces extension of filopodia and neurites on amphoterin-coated substrates.
Furthermore, ligation of RAGE in transfected cells enhances NF-B-dependent transcription. Both the RAGEmediated neurite outgrowth and activation of NF-B are blocked by deletion of the cytoplasmic domain of RAGE.Moreover, dominant negative Rac and Cdc42 but not dominant negative Ras inhibit the extension of neurites induced by RAGE-amphoterin interaction. In contrast, the activation of NF-B is inhibited by dominant negative Ras but not Rac or Cdc42. These data suggest that distinct signaling pathways are used by RAGE to induce neurite outgrowth and regulate gene expression through NF-B.
Bone has an enormous capacity for growth, regeneration, and remodeling. This capacity is largely due to induction of osteoblasts that are recruited to the site of bone formation. The recruitment of osteoblasts has not been fully elucidated, though the immediate environment of the cells is likely to play a role via cell– matrix interactions. We show here that heparin-binding growth-associated molecule (HB-GAM), an extracellular matrix–associated protein that enhances migratory responses in neurons, is prominently expressed in the cell matrices that act as target substrates for bone formation. Intriguingly, N-syndecan, which acts as a receptor for HB-GAM, is expressed by osteoblasts/osteoblast precursors, whose ultrastructural phenotypes suggest active cell motility. The hypothesis that HB-GAM/N-syndecan interaction mediates osteoblast recruitment, as inferred from developmental studies, was tested using osteoblast-type cells that express N-syndecan abundantly. These cells migrate rapidly to HB-GAM in a haptotactic transfilter assay and in a migration assay where HB-GAM patterns were created on culture wells. The mechanism of migration is similar to that previously described for the HB-GAM–induced migratory response of neurons. Our hypothesis that HB-GAM/N-syndecan interaction participates in regulation of osteoblast recruitment was tested using two different in vivo models: an adjuvant-induced arthritic model and a transgenic model. In the adjuvant-induced injury model, the expression of HB-GAM and of N-syndecan is strongly upregulated in the periosteum accompanying the regenerative response of bone. In the transgenic model, the HB-GAM expression is maintained in mesenchymal tissues with the highest expression in the periosteum. The HB-GAM transgenic mice develop a phenotype characterized by an increased bone thickness. HB-GAM may thus play an important role in bone formation, probably by mediating recruitment and attachment of osteoblasts/osteoblast precursors to the appropriate substrates for deposition of new bone.
SUMMARYWe describe a nonradioactive preembedding in situ hybridization protocol using digoxigenin-labeled RNA probes and tyramide signal amplification to increase the sensitivity of detection. The protocol is sensitive enough for electron microscopic localization of endogenous messenger RNAs encoding  -actin and amphoterin. Three visualization methods were compared: diaminobenzidine enhanced by nickel, Nanogold enhanced by silver and gold toning, and fluorescently labeled tyramides. Diaminobenzidine and Nanogold can be used in both light and electron microscopy. The nickel-enhanced diaminobenzidine was the most sensitive visualization method. It is easy to accomplish but a drawback is poor spatial resolution, which restricts its use at high magnifications. Nanogold visualization has considerably better spatial resolution and is therefore recommended for electron microscopy. Fluorescent tyramides, especially TRITC-tyramide, offer a good detection method for fluorescence and confocal microscopy. The methods were used to localize amphoterin and  -actin mRNAs in motile cells. Both mRNAs were found in the soma and cell processes. In double labeling experiments,  -actin mRNA localized to filamentous structures that also contained ribosomal proteins. Especially in the cortical cytoplasm,  -actin mRNA was associated with actin filaments. Direct localization to microtubules was only rarely seen. S ubcellular compartmentalization of mRNA has been recognized as a mechanism for regulation of gene expression and protein sorting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.