Ependymomas are neuroepithelial tumors that arise from the ependymal layer bordering the cerebral ventricles and spinal canal. Intracranial ependymoma represents a major encephalic tumor in children, while spinal ependymoma develops more frequently in adults. To understand the pharmacoresistance that characterizes this tumoral entity, we analyzed the level of expression and localization of three major efflux transport proteins with a multidrug resistance function, P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP), in a series of 25 ependymomas from both children and adults. Real-time-PCR analysis showed that all three genes were expressed in all tumors, with no apparent correlation between the level of expression and either age or tumor grade. The MRP1 transcript was expressed at a significantly higher level in spinal tumors than in intracranial tumors. The expression of the proteins corresponding to these genes was confirmed by Western blot analysis. In an immunohistochemical study, P-glycoprotein and BCRP were shown to be associated with the tumoral vessels, where they presented a luminal localization, a prerequisite for their efflux drug activity into the blood. These data indicate that a biochemical, transporter-dependent blood-tumor barrier may exist in ependymomas, which may reduce the tumoral bioavailability of lipophilic and amphiphilic anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.