Replicative oriC plasmids were recently developed for several mollicutes, including three Mycoplasma species belonging to the mycoides cluster that are responsible for bovine and caprine diseases: Mycoplasma mycoides subsp. mycoides small-colony type, Mycoplasma mycoides subsp. mycoides large-colony type, and Mycoplasma capricolum subsp. capricolum. In this study, oriC plasmids were evaluated in M. capricolum subsp. capricolum as genetic tools for (i) expression of heterologous proteins and (ii) gene inactivation by homologous recombination. The reporter gene lacZ, encoding -galactosidase, and the gene encoding spiralin, an abundant surface lipoprotein of the related mollicute Spiroplasma citri, were successfully expressed. Functional Escherichia coli -galactosidase was detected in transformed Mycoplasma capricolum subsp. capricolum cells despite noticeable codon usage differences. The expression of spiralin in M. capricolum subsp. capricolum was assessed by colony and Western blotting. Accessibility of this protein at the cell surface and its partition into the Triton X-114 detergent phase suggest a correct maturation of the spiralin precursor. The expression of a heterologous lipoprotein in a mycoplasma raises potentially interesting applications, e.g., the use of these bacteria as live vaccines. Targeted inactivation of gene lppA encoding lipoprotein A was achieved in M. capricolum subsp. capricolum with plasmids harboring a replication origin derived from S. citri. Our results suggest that the selection of the infrequent events of homologous recombination could be enhanced by the use of oriC plasmids derived from related mollicute species. Mycoplasma gene inactivation opens the way to functional genomics in a group of bacteria for which a large wealth of genome data are already available and steadily growing.Mycoplasmas are small bacteria from the class Mollicutes that lack a cell wall and are characterized by a genome with a low percent GϩC (for a review, see reference 27). In contrast to the large wealth of data extracted from the analysis of their genome sequences (2), there is still a general lack of efficient genetic tools for the functional genomics of these bacteria. Transposon-based strategies have been used to generate random insertion mutants in a few mycoplasma species, but the attempts to develop cloning vectors from endogenous plasmids and viruses have encountered limited success (for a review, see reference 28). Recently, oriC-based replicative plasmids were developed for three mycoplasmas that cause economically important diseases in ruminants and belong to the mycoides cluster: Mycoplasma mycoides subsp. mycoides large-colony type, Mycoplasma mycoides subsp. mycoides small-colony type, and Mycoplasma capricolum subsp. capricolum (20). As previously shown for Mycoplasma pulmonis (6) and for another mollicute, Spiroplasma citri (38), the oriC plasmids that harbor the chromosomal dnaA gene and the adjacent DnaA box sequences were efficiently replicated in their respective hosts. Moreover, by h...
The cytotoxicities of various strains of Mycoplasma mycoides subsp. mycoides small colony type (SC), the agent of contagious bovine pleuropneumonia (CBPP), were measured in vitro using embryonic calf nasal epithelial (ECaNEp) cells. Strains isolated from acute cases of CBPP induced high cytotoxicity in the presence of glycerol, concomitant with the release of large amounts of toxic H 2 O 2 that were found to be translocated into the cytoplasms of the host cells by close contact of the Mycoplasma strains with the host cells. Currently used vaccine strains also showed high cytotoxicity and high H 2 O 2 release, indicating that they are attenuated in another virulence attribute. Strains isolated from recent European outbreaks of CBPP with mild clinical signs, which are characterized by a defect in the glycerol uptake system, released small amounts of H 2 O 2 and showed low cytotoxicity to ECaNEp cells. M. mycoides subsp. mycoides SC strain PG1 released large amounts of H 2 O 2 but was only slightly cytotoxic. PG1 was found to have a reduced capacity to bind to ECaNEp cells and was unable to translocate H 2 O 2 into the bovine cells, in contrast to virulent strains that release large amounts of H 2 O 2 . Thus, an efficient translocation of H 2 O 2 into host cells is a prerequisite for the cytotoxic effect and requires an intact adhesion mechanism to ensure a close contact between mycoplasmas and host cells.
Mycoplasma hominis is an opportunistic human mycoplasma species that can be either commensal or pathogenic. Its detection by culture is considered to comprise the reference technique. Previously reported PCR techniques target the 16S rRNA or the gap gene, although sequence variations among clinical isolates may lead to variations in clinical sensitivity. The present study aimed to develop a specific TaqMan quantitative real-time PCR assay, targeting a gene conserved in all M. hominis isolates, and to compare it with quantitative culture. With the knowledge of the M. hominis PG21 genome sequence, the yidC gene, encoding a membrane protein translocase, was chosen as target. Its intraspecies heterogeneity was checked at the nucleotide level using 31 reference or clinical strains. The limit of detection, the analytical specificity and the reproducibility of the assay were assessed. Moreover, PCR and culture results were compared using 153 urogenital specimens. The limit of detection was seven copies/μL. The analytical specificity was 100%, with good inter- and intra-assay reproducibility. Among the 153 urogenital specimens, the yidC PCR and culture allowed detection of 55 and 45 M. hominis-positive samples, respectively. Comparison of the bacterial load among the 45 specimens found to be M. hominis-positive by both techniques revealed a statistically significant association between the quantitative results obtained. In conclusion, we developed a specific, sensitive and reproducible real-time PCR to detect all M. hominis clinical isolates. This PCR was shown to have higher sensitivity than culture, although both methods were correlated for quantification of M. hominis loads in urogenital specimens.
Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.
Mycoplasma mycoides subspecies mycoides small colony (SC) is the aetiologic agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease causing important losses in cattle production. The publication of the genome sequence of M. mycoides subsp. mycoides SC should facilitate the identification of putative virulence factors. However, real progress in the study of molecular mechanisms of pathogenicity also requires efficient molecular tools for gene inactivation. In the present study, we have developed a transposon-based approach for the random mutagenesis of M. mycoides subsp. mycoides SC. A PCR-based screening assay enabled the characterization of several mutants with knockouts of genes potentially involved in pathogenicity. The initial transposon was further improved by combining it with the transposon cd TnpR/res recombination system to allow the production of unmarked mutations. Using this approach, we isolated a mutant free of antibiotic-resistance genes, in which the gene encoding the main lipoprotein LppQ was disrupted. The mutant was found to express only residual amounts of the truncated N-terminal end of LppQ. This approach opens the way to study virulence factors and pathogen-host interactions of M. mycoides subsp. mycoides SC and to develop new, genetically defined vaccine strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.