Differences in the herbivore community between a plant's native (specialists and generalists) and introduced range (almost exclusively generalists) may lead to the evolution of reduced allocation to defences against specialist herbivores in the introduced range, allowing for increased allocation to competitive ability and to defences against generalist herbivores. Following this logic, the introduction of biological control agents should reverse this evolutionary shift and select for plants with life-history traits that are more similar to those of plants in the native range than those of plants in the introduced range that have not been exposed to biological control. In a common garden experiment, we compared performance and resistance traits of tansy ragwort, Jacobaea vulgaris, among populations from the introduced range (New Zealand and North America) that have either been exposed to or grown free from the biological control agent Longitarsus jacobaeae. For comparison, we included populations from the native European range. We found lower levels of generalist-deterrent pyrrolizidine alkaloids (PAs) and of soluble phenolics in New Zealand populations with than in populations without exposure to L. jacobaeae, while the opposite pattern was detected among North American populations. Contrary to expectation, populations with exposure to L. jacobaeae revealed more feeding damage by L. jacobaeae than populations without exposure. Introduced populations had higher levels of PAs and reproductive output than native J. vulgaris populations. Jacobaea vulgaris was introduced in different parts of the world some 100-130 years ago, while L. jacobaeae was introduced only some 20-40 years ago. Hence, the larger differences observed between native and introduced populations, as compared to introduced C. Rapo Á U.
Determinants of the host ranges of insect herbivores are important from an evolutionary perspective and also have implications for applications such as biological control. Although insect herbivore host ranges typically are phylogenetically constrained, herbivore preference and performance ultimately are determined by plant traits, including plant secondary metabolites. Where such traits are phylogenetically labile, insect hervivore host ranges are expected to be phylogenetically disjunct, reflecting phenotypic similarities rather than genetic relatedness among potential hosts. We tested this hypothesis in the laboratory with a Brassicaceae-specialized weevil, Ceutorhynchus cardariae Korotyaev (Coleoptera: Curculionidae), on 13 test plant species differing in their suitability as hosts for the weevil. We compared the associations between feeding by C. cardariae and either phenotypic similarity (secondary chemistry—glucosinolate profile) or genetic similarity (sequence of the chloroplast gene ndhF) using two methods—simple correlations or strengths of association between feeding by each species, and dendrograms based on either glucosinolates or ndhF sequence (i.e., a phylogram). For comparison, we performed a similar test with the oligophagous Plutella xylostella (L.) (Lepidoptera: Plutellidae) using the same plant species. We found using either method that phenotypic similarity was more strongly associated with feeding intensity by C. cardariae than genetic similarity. In contrast, neither genetic nor phenotypic similarity was significantly associated with feeding intensity on the test species by P. xylostella. The result indicates that phenotypic traits can be more reliable indicators of the feeding preference of a specialist than phylogenetic relatedness of its potential hosts. This has implications for the evolution and maintenance of host ranges and host specialization in phytophagous insects. It also has implications for identifying plant species at risk of nontarget attack by potential weed biological control agents and hence the approach to prerelease testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.