In branched transportation problems mass has to be transported from a given initial distribution to a given final distribution, where the cost of the transport is proportional to the transport distance, but subadditive in the transported mass. As a consequence, mass transport is cheaper the more mass is transported together, which leads to the emergence of hierarchically branching transport networks. We here consider transport costs that are piecewise affine in the transported mass with N affine segments, in which case the resulting network can be interpreted as a street network composed of N different types of streets. In two spatial dimensions we propose a phase field approximation of this street network using N phase fields and a function approximating the mass flux through the network. We prove the corresponding Γ-convergence and show some numerical simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.