Serotonergic neurons in the medulla are central respiratory chemoreceptors. Here we show that serotonergic neurons in the midbrain of rats are also highly chemosensitive to small changes in CO2/pH and are closely associated with large penetrating arteries. We propose that midbrain raphé neurons are sensors of blood CO2 that maintain pH homeostasis by inducing arousal, anxiety and changes in cerebrovascular tone in response to respiratory acidosis.
To some it may seem that we now know less about respiratory chemoreception than we did 20 years ago. Back then, it was widely accepted that the central respiratory chemoreceptors (CRCs) were located exclusively on or near the surface of the ventrolateral medulla (VLMS). Now, instead, it is generally believed that there are widespread sites of chemoreception, and there is little agreement on when and how each of these sites is involved in respiratory control. However, those in the field know that this actually is progress, primarily because we have gone from simply identifying candidate regions, to identifying specific neuronal subtypes that may be the sensors. In this invited review, we have been asked to discuss some of the current controversies in the field. First, we define the minimal requirements for a cell to be a CRC, and what assumptions can not be made without more data. Then we review the evidence that two neuronal subtypes, serotonergic neurones of the midline raphe and glutamatergic neurones of the retrotrapezoid nucleus, are chemoreceptors. There is evidence supporting a role in respiratory chemoreception for both types of neurone, as well as the other candidates, but there is also information that is missing. Future work will need to focus on which of the candidates are indeed chemoreceptors, what percentage of the overall response each one contributes, and how this percentage varies under different conditions.
BACKGROUND: While Walkbot-assisted locomotor training (WLT) provided ample evidence on balance and gait improvements, the therapeutic effects on cardiopulmonary and psychological elements as well as fall confidence are unknown in stroke survivors. OBJECTIVE: The present study aimed to compare the effects of Walkbot locomotor training (WLT) with conventional locomotor training (CLT) on balance and gait, cardiopulmonary and psychological functions and fall confidence in acute hemiparetic stroke. METHODS: Fourteen patients with acute hemiparetic stroke were randomized into either the WLT (60 min physical therapy + 30 min Walkbot-assisted gait training) or CLT (60 min physical therapy + 30 min gait training) groups, 7 days/week over 2 weeks. Clinical outcomes included the Berg Balance Scale (BBS), Functional Ambulation Category (FAC), heart rate (HR), Borg Rating of Perceived Exertion (BRPE), Beck Depression Inventory-II (BDI-II), and the activities-specific balance confidence (ABC) scale. The analysis of covariance (ANCOVA) was conducted at P < 0.05. RESULTS: ANCOVA showed that WLT showed superior effects, compared to CLT, on FAC, HR, BRPE, BDI-II, and ABC scale (P < 0.05), but not on BBS (P = 0.061). CONCLUSIONS: Our results provide novel, promising clinical evidence that WLT improved balance and gait function as well as cardiopulmonary and psychological functions, and fall confidence in acute stroke survivors who were unable to ambulate independently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.