A versatile strategy is reported for the multi-gram synthesis of discrete oligomers from commercially available monomer families, e.g., acrylates, styrenics, siloxanes. Central to this strategy is the identification of reproducible procedures for the separation of oligomer mixtures using automated flash chromatography systems with the effectiveness of this approach demonstrated through the multi-gram preparation of discrete oligomer libraries (Đ = 1.0). Synthetic availability, coupled with accurate structural control, allows these functional building blocks to be harnessed for both fundamental studies as well as targeted technological applications.
A highly efficient photomediated atom transfer radical polymerization protocol is reported for semi-fluorinated acrylates and methacrylates. Use of the commercially available solvent, 2-trifluoromethyl-2-propanol, optimally balances monomer, polymer, and catalyst solubility while eliminating transesterification as a detrimental side reaction. In the presence of UV irradiation and ppm concentrations of copper(II) bromide and Me-TREN (TREN = tris(2-aminoethyl amine)), semi-fluorinated monomers with side chains containing between three and 21 fluorine atoms readily polymerize under controlled conditions. The resulting polymers exhibit narrow molar mass distributions (Đ ≈ 1.1) and high end group fidelity, even at conversions greater than 95%. This level of control permits the in situ generation of chain-end functional homopolymers and diblock copolymers, providing facile access to semi-fluorinated macromolecules using a single methodology with unprecedented monomer scope. The results disclosed herein should create opportunities across a variety of fields that exploit fluorine-containing polymers for tailored bulk, interfacial, and solution properties.
Usually atom transfer radical polymerization (ATRP) requires various parameters, such as the type of initiator, transition metal, ligand, solvent, temperature, deactivator, added salts and reducing agents, need to be optimised in order to achieve a high degree of control over molecular weight and dispersity. These components play a major role when switching monomers e.g. from acrylic to methacrylic and/or styrenic monomers during the synthesis of homo-and block copolymers as the stability and reactivity of the carbon centered propagating radical dramatically changes. This is a challenge for both "experts" and non-experts as choosing the appropriate conditions for successful polymerization can be time consuming and an arduous task. In this work we describe some universal conditions for the efficacious polymerization of acrylates, methacrylates and styrene (using an identical initiator, ligand, copper salt and solvent) based on commercially available reagents (PMDETA, IPA, Cu(0) wire). The versatility of these conditions is demonstrated by the near quantitative polymerization of these monomer families to yield well-defined materials over a range of molecular weights with low dispersities (~1.1-1.2). The control and high end group fidelity is further exemplified by in situ block copolymerization upon sequential monomer addition for the case of methacrylates and styrene furnishing higher molecular weight copolymers with minimal termination. The facile nature of these conditions, combined with readily available reagents will greatly expand the access and availability of tailored polymeric materials to all researchers.
Amongst functional macromolecules, the combination of polymers and dyes is a research field of great potential with regard to high-performance materials. Accordingly, colored polymers have become increasingly important as materials for miscellaneous technical applications in recent years while also being a major part of everyday life. For instance, dye-containing polymers are nowadays widely applied in medicine, painting industries, analytics and gas separation processes. Since these applications are obviously connected to the dye's nature, which is incorporated into the corresponding polymers, the affinity of certain polymers to dyes is exploited in wastewater work-ups after (textile) dyeing procedures. In this review, we wish to point out the great importance of dye-containing polymers, with a comprehensive scope and a focus on azo, triphenylmethane, indigoid, perylene and anthraquinone dyes. Since a large number of synthetic approaches towards the preparation of such materials can be found in the literature, an elaborated overview of different preparation techniques is given as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.