A growing energy demand requires new and preferably renewable energy sources. The infinite availability of solar radiation makes its conversion into storable and transportable energy forms attractive for research as well as for the industry. One promising example of a transportable fuel is hydrogen (H2), making research into eco-friendly hydrogen production meaningful. Here, a hybrid system was developed using newly designed recombinant spider silk protein variants as a template for mineralization with inorganic titanium dioxide and gold. These bioinspired organic/inorganic hybrid materials allow for hydrogen production upon light irradiation. To begin with, recombinant spider silk proteins bearing titanium dioxide and gold-binding moieties were created and processed into structured films. These films were modified with gold and titanium dioxide in order to produce a photocatalyst. Subsequent testing revealed hydrogen production as a result of light-induced hydrolysis of water. Therefore, the novel setup presented here provides access to a new principle of generating advanced hybrid materials for sustainable hydrogen production and depicts a promising platform for further studies on photocatalytic production of hydrogen, the most promising future fuel.
Biotechnological production is a powerful tool to design materials with customized properties. The aim of this work was to apply designed spider silk proteins to produce Janus fibers with two different functional sides. First, functionalization was established through a cysteine‐modified silk protein, ntagCyseADF4(κ16). After fiber spinning, gold nanoparticles (AuNPs) were coupled via thiol‐ene click chemistry. Significantly reduced electrical resistivity indicated sufficient loading density of AuNPs on such fiber surfaces. Then, Janus fibers were electrospun in a side‐by‐side arrangement, with “non‐functional” eADF4(C16) on the one and “functional” ntagCyseADF4(κ16) on the other side. Post‐treatment was established to render silk fibers insoluble in water. Subsequent AuNP binding was highly selective on the ntagCyseADF4(κ16) side demonstrating the potential of such silk‐based systems to realize complex bifunctional structures with spatial resolutions in the nano scale.
Mittels moderner Biotechnologie können heutzutage neue Materialien mit maßgeschneiderten Eigenschaften entwickelt werden. Ziel dieser Studie war es, funktionalisierbare Janusfasern aus rekombinanten Spinnenseidenproteinen herzustellen. Dabei wurde zunächst das Cystein‐modifizierte Seidenkonstrukt ntagCyseADF4(κ16) nassgesponnen. Auf den Fasern wurden anschließend mittels Thiol‐En‐Klickchemie Goldnanopartikel (AuNPs) gekuppelt. Als Indikator für eine hohe AuNP‐Beladungsdichte wurde ein deutlich reduzierter spezifischer elektrischer Widerstand der Fasern gemessen. Anschließend wurden mittels Elektrospinnen zweiseitige Janusfasern mit “nicht‐funktionalem” eADF4(C16) auf der einen und “funktionalem” ntagCyseADF4(κ16) auf der anderen Seite hergestellt. Eine Nachbehandlung wurde etabliert, um die Seidenfasern in Wasser unlöslich zu machen. Es wurde gezeigt, dass die AuNP‐Kupplung ausschließlich auf der ntagCyseADF4(κ16)‐Seite auftrat. Die hochselektive Funktionalisierung zeigt das Potenzial solcher seidenbasierten Systeme zur Realisierung komplexer bifunktioneller Strukturen mit räumlicher Auflösung im Nanobereich.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.