The biofilm associated protein (Bap) is recognised as the essential component for biofilm formation in Staphylococcus aureus V329 and has been predicted as important for other species as well. Although Bap orthologs are also present in most S. xylosus strains, their contribution to biofilm formation has not yet been demonstrated. In this study, different experimental approaches were used to elucidate the effect of Bap on biofilm formation in S. xylosus and the motif structure of two biofilm-forming S. xylosus strains TMW 2.1023 and TMW 2.1523 was compared to Bap of S. aureus V329. We found that despite an identical structural arrangement into four regions, Bap from S. xylosus differs in key factors to Bap of S. aureus, i.e., isoelectric point of aggregation prone Region B, protein homology and type of repeats. Disruption of bap had no effect on aggregation behavior of selected S. xylosus strains and biofilm formation was unaffected (TMW 2.1023) or at best slightly reduced under neutral conditions (TMW 2.1523). Further, we could not observe any typical characteristics of a S. aureus Bap-positive phenotype such as functional impairment by calcium addition and rough colony morphology on congo red agar (CRA). A dominating role of Bap in cell aggregation and biofilm formation as reported mainly for S. aureus V329 was not observed. In contrast, this work demonstrates that functions of S. aureus Bap cannot easily be extrapolated to S. xylosus Bap, which appears as non-essential for biofilm formation in this species. We therefore suggest that biofilm formation in S. xylosus follows different and multifactorial mechanisms.
Staphylococcus (S.) xylosus
is a coagulase-negative
Staphylococcus
species naturally present in food of animal origin with a previously described potential for biofilm formation. In this study we characterized biofilm formation of five selected strains isolated from raw fermented dry sausages, upon different growth conditions. Four strains exhibited a biofilm positive phenotype with strain-dependent intensities. Biofilm formation of
S. xylosus
was influenced by the addition of glucose, sodium chloride and lactate to the growth medium, respectively. It was further dependent on strain-specific cell surface properties. Three strains exhibited hydrophobic and two hydrophilic cell surface properties. The biofilm positive hydrophilic strain TMW 2.1523 adhered significantly better to hydrophilic than to hydrophobic supports, whereas the differences in adherence to hydrophobic versus hydrophilic supports were not as distinct for the hydrophobic strains TMW 2.1023, TMW 2.1323, and TMW 2.1521. Comparative genomics enabled prediction of functional biofilm-related genes and link these to phenotypic variations. While a wide range of biofilm associated factors/genes previously described for
S. aureus
and
S. epidermidis
were absent in the genomes of the five strains analyzed, they all possess the gene encoding biofilm associated protein Bap. The only biofilm negative strain TMW 2.1602 showed a mutation in the
bap
sequence. This study demonstrates that Bap and surface hydrophobicity are important factors in
S. xylosus
biofilm formation with potential impact on the assertiveness of a starter strain against autochthonous staphylococci by competitive exclusion during raw sausage fermentation.
Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces, and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished and significantly reduced in TMW 2.1023. Macro‐ and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared with the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, Staphylococcus paraxylosus, and Staphylococcus nepalensis and additionally encoded in a small group of Staphylococcus cohnii and Staphylococcus saprophyticus strains. This study provides insights into protein‐mediated biofilm formation of S. xylosus and identifies a new cell wall‐associated protein influencing cell aggregation and biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.