Treatment of Plasmodium falciparum with the potent inhibitor dicyclohexylamine completely arrests in vitro cell proliferation of the chloroquine-susceptible P. falciparum strain NF54 and the R strain, which shows less sensivity to chloroquine. The average inhibitory concentration (IC 50 ) values determined for both strains revealed dierent inhibition pro®les. The IC 50 value for the chloroquine-sensitive NF54 strain was 97 lM and 501 lM for the R strain. Monitoring polyamine pools after treatment with dicyclohexylamine leads to a signi®cant decrease in the intracellular spermidine content, which was nearly reversed by supplementation with spermidine. Since spermidine is an important precursor for the biosynthesis of hypusine and homospermidine in eukaryotes, we studied the developmental eect on both P. falciparum strains of 1,7-diaminoheptane as an inhibitor of deoxyhypusine synthase (EC 1.1.1.249) in mammalian cells, and agmatine as a moderate inhibitor of homospermidine synthase (EC 2.5.1.44). Inhibition pro®les with 1,7-diaminoheptane resulted in an IC 50 value of 466 lM for the NF54 strain and 319 lM for the R strain. Spermidine pools changed signi®cantly. Inhibition with agmatine caused a strong decrease in parasitemia for the chloroquine-susceptible NF54 strain, with a determined IC 50 value of 431 lM and an IC 50 value of 340 lM for the less chloroquine-susceptible R strain. Spermidine was not detectable after inhibition. The uncommon triamine homospermidine occurred in both P. falciparum strains. To our knowledge this is the ®rst evidence of homo-spermidine in P. falciparum. The use of speci®c inhibitors of spermidine metabolism might be a novel strategy for the design of new antimalarials, and suggests the occurrence of both enzymes in the parasite.
Abstract. Targeting polyamines of parasitic protozoa in chemotherapy has attracted attention because polyamines might reveal novel drug targets for antiparasite therapies (Müller et al. 2001). The biological function of the triamine spermidine in parasitic protozoa has not been studied in great detail although the results obtained mainly imply three different functions, i.e., cell proliferation, cell differentiation, and biosynthesis of macromolecules. Sequence information from the malaria genome project databases and inhibitor studies provide evidence that the current status of spermidine research has to be extended since enzymes of spermidine metabolism are present in the parasite (Kaiser et al. 2001). Isolation and characterisation of these enzymes, i.e., deoxyhypusine synthase (EC 1.1.1.249) (DHS) and homospermidine synthase (EC 2.5.1.44) (HSS) might lead to valuable new targets in drug therapy. Currently research on spermidine metabolism is based on the deposition of the deoxyhypusine synthase nucleic acid sequence in GenBank while the activity of homospermidine synthase was deduced from inhibitor studies. Spermidine biosynthesis is catalyzed by spermidine synthase (EC 2.5.1.16) which transfers an aminopropyl moiety from decarboxylated S-adenosylmethionine to putrescine. Spermidine is also an important precursor in the biosynthesis of the unusual amino acid hypusine and the uncommon triamine homospermidine in eukaryotes, in particular in pyrrolizidine alkaloid-producing plants (Ober and Hartmann 2000). Hypusine is formed by a two-step enzymatic mechanism starting with the transfer of an aminobutyl moiety from spermidine to the ε-amino group of one of the lysine residues in the precursor protein of eukaryotic initiation factor eIF5A by DHS (Lee and Park 2000). The second step of hypusinylation is completed by deoxyhypusine hydroxylase (EC 1.14.9929) (Abbruzzese et al. 1985). Homospermidine formation in eukaryotes parallels deoxyhypusine formation in the way that in an NAD + -dependent reaction an aminobutyl moiety is transferred from spermidine. In the case of homospermidine synthase, however the acceptor is putrescine. Thus the triamine homospermidine consists of two symmetric aminobutyl moieties while there is one aminobutyl and one aminopropyl moiety present in spermidine. Here, we review the metabolism of the triamine spermidine with particular focus on the biosynthesis of hypusine and homospermidine in parasitic protozoa, i.e., Plasmodium, Trypanosoma and Leishmania, compared to that in prokaryotes i.e., Escherichia coli, a phytopathogenic virus and pyrrolizidine alkaloid-producing plants (Asteraceae) and fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.