Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death—a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.
Pharmacological preconditioning (PC) and postconditioning (PoC), for example, by treatment with the α2-adrenoreceptor agonist Dexmedetomidine (Dex), protects hearts from ischemia-reperfusion (I/R) injury in experimental studies, however, translation into the clinical setting has been challenging. Acute hyperglycemia adversely affects the outcome of patients with myocardial infarction. Additionally, it also blocks cardioprotection by multiple pharmacological agents. Therefore, we investigated the possible influence of acute hyperglycemia on Dexmedetomidine-induced pre- and postconditioning. Experiments were performed on the hearts of male Wistar rats, which were randomized into 7 groups, placed in an isolated Langendorff system and perfused with Krebs-Henseleit buffer. All hearts underwent 33 min of global ischemia, followed by 60 min of reperfusion. Control (Con) hearts received Krebs-Henseleit buffer (Con KHB), glucose (Con HG) or mannitol (Con NG) as vehicle only. Hearts exposed to hyperglycemia (HG) received KHB, containing 11 mmol/L glucose (an elevated, but commonly used glucose concentration for Langendorff perfused hearts) resulting in a total concentration of 22 mmol/L glucose throughout the whole experiment. To ensure comparable osmolarity with HG conditions, normoglycemic (NG) hearts received mannitol in addition to KHB. Hearts were treated with 3 nM Dexmedetomidine (Dex) before (DexPC) or after ischemia (DexPoC), under hyperglycemic or normoglycemic conditions. Infarct size was determined by triphenyltetrazoliumchloride staining. Acute hyperglycemia had no impact on infarct size compared to the control group with KHB (Con HG: 56 ± 9% ns vs. Con KHB: 56 ± 7%). DexPC reduced infarct size despite elevated glucose levels (DexPC HG: 35 ± 3%, p < 0.05 vs. Con HG). However, treatment with Dex during reperfusion showed no infarct size reduction under hyperglycemic conditions (DexPoC HG: 57 ± 9%, ns vs. Con HG). In contrast, hearts treated with mannitol demonstrated a significant decrease in infarct size compared to the control group (Con NG: 37 ± 3%, p < 0.05 vs. Con KHB). The combination of Dex and mannitol presents exactly opposite results to hearts treated with hyperglycemia. While DexPC completely abrogates infarct reduction through mannitol treatment (DexPC NG: 55 ± 7%, p < 0.05 vs. Con NG), DexPoC had no impact on mannitol-induced infarct size reduction (DexPoC NG: 38 ± 4%, ns vs. Con NG). Acute hyperglycemia inhibits DexPoC, while it has no impact on DexPC. Treatment with mannitol induces cardioprotection. Application of Dex during reperfusion does not influence mannitol-induced infarct size reduction, however, administering Dex before ischemia interferes with mannitol-induced cardioprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.