Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
Genome‐wide transcription studies are revealing an increasing number of “dispersed promoters” that, unlike “focused promoters”, lack well‐conserved sequence motifs and tight regulation. Dispersed promoters are nevertheless marked by well‐defined chromatin structures, suggesting that specific sequence elements must exist in these unregulated promoters. Here, we have analyzed regions of transcription initiation in the eukaryotic parasite Trypanosoma brucei, in which RNA polymerase II transcription initiation occurs over broad regions without distinct promoter motifs and lacks regulation. Using a combination of site‐specific and genome‐wide assays, we identified GT‐rich promoters that can drive transcription and promote the targeted deposition of the histone variant H2A.Z in a genomic context‐dependent manner. In addition, upon mapping nucleosome occupancy at high resolution, we find nucleosome positioning to correlate with RNA pol II enrichment and gene expression, pointing to a role in RNA maturation. Nucleosome positioning may thus represent a previously unrecognized layer of gene regulation in trypanosomes. Our findings show that even highly dispersed, unregulated promoters contain specific DNA elements that are able to induce transcription and changes in chromatin structure.
Despite their importance for most DNA-templated processes, the function of individual histone modifications has remained largely unknown because in vivo mutational analyses are lacking. The reason for this is that histone genes are encoded by multigene families and that tools to simultaneously edit multiple genomic loci with high efficiency are only now becoming available. To overcome these challenges, we have taken advantage of the power of CRISPR–Cas9 for precise genome editing and of the fact that most DNA repair in the protozoan parasite Trypanosoma brucei occurs via homologous recombination. By establishing an episome-based CRISPR–Cas9 system for T. brucei, we have edited wild type cells without inserting selectable markers, inserted a GFP tag between an ORF and its 3′UTR, deleted both alleles of a gene in a single transfection, and performed precise editing of genes that exist in multicopy arrays, replacing histone H4K4 with H4R4 in the absence of detectable off-target effects. The newly established genome editing toolbox allows for the generation of precise mutants without needing to change other regions of the genome, opening up opportunities to study the role of individual histone modifications, catalytic sites of enzymes or the regulatory potential of UTRs in their endogenous environments.
Specific DNA-protein interactions are the basis for many important cellular mechanisms like the regulation of gene expression or replication. Knowledge about the precise genomic locations of DNA-protein interactions is important because it provides insight into the regulation of these processes. Recently, we have adapted an approach that combines micrococcal nuclease (MNase) digestion of chromatin with chromatin immunoprecipitation in Trypanosoma brucei. Here, we describe in detail how this method can be used to map the genome-wide distribution of nucleosomes or other DNA-binding proteins at high resolution in T. brucei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.