Most aerobic organisms are exposed to oxidative stress. Looking for enzyme activities involved in the bacterial response to this kind of stress, we focused on the btuE-encoded Escherichia coli BtuE, an enzyme that shares homology with the glutathione peroxidase (GPX) family. This work deals with the purification and characterization of the btuE gene product.
Purified BtuE decomposes in vitro hydrogen peroxide in a glutathione-dependent manner. BtuE also utilizes preferentially thioredoxin A to decompose hydrogen peroxide as well as cumene-, tert-butyl-, and linoleic acid hydroperoxides, confirming that its active site confers non-specific peroxidase activity. These data suggest that the enzyme may have one or more organic hydroperoxide as its physiological substrate.
The btuE gene was induced when cells were exposed to oxidative stress elicitors that included potassium tellurite, menadione and hydrogen peroxide, among others, suggesting that BtuE could participate in the E. coli response to reactive oxygen species. To our knowledge, this is the first report describing a glutathione peroxidase in E. coli.
Debaryomyces hansenii is a halotolerant/halophilic yeast usually found in salty environments. The yeast accumulated sodium at high concentrations, which improved growth in salty media. In contrast, lithium was toxic even at low concentrations and its presence prevented cell proliferation. To analyse the responses to both cations, metabolite levels, enzymatic activities and gene expression were determined, showing that NaCl and LiCl trigger different cellular responses. At high concentrations of NaCl (0.5 or 1.5 M) cells accumulated higher amounts of the intermediate metabolites glyoxylate and malate and, at the same time, the levels of intracellular oxoglutarate decreased. Additionally, 0.5 M NaCl increased the activity of the enzymes isocitrate lyase and malate synthase involved in the synthesis of glyoxylate and malate respectively and decreased the activity of isocitrate dehydrogenase. Moreover, transcription of the genes coding for isocitrate lyase and malate synthase was activated by NaCl. Also, cells accumulated phosphate upon NaCl exposure. None of these effects was provoked when LiCl (0.1 or 0.3 M) was used instead of NaCl. Lithium induced accumulation of higher amounts of oxoglutarate and decreased the concentrations of glyoxylate and malate to non‐detectable levels. Cells incubated with lithium also showed higher activity of the isocitrate dehydrogenase and neither increased isocitrate lyase and malate synthase activities nor the transcription of the corresponding genes. In summary, we show that sodium, but not lithium, up regulates the shunt of the glyoxylic acid in D. hansenii and we propose that this is an important metabolic adaptation to thrive in salty environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.