Two vesicle pools, readily releasable (RRP) and reserve (RP) pools, are present at Drosophila neuromuscular junctions. Using a temperature-sensitive mutant, shibire(ts), we studied pool sizes and vesicle mobilization rates. In shibire(ts), due to lack of endocytosis at nonpermissive temperatures, synaptic currents continuously declined during tetanic stimulation until they ceased as the result of vesicle depletion. By then, approximately 84,000 quanta were released. Vesicles were mobilized from RP at a rate 1/7-1/10 of RRP. Cytochalasin D inhibited mobilization of vesicles from RP, allowing us to estimate the size of RRP as 14%-19% of all vesicles. Vesicle recycling supports synaptic transmission during prolonged tetanic stimulation and the maximum recycling rate was 1000 vesicles/s.
During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.
Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.