Objectives Grating-interferometry-based mammography (GIM) might facilitate breast cancer detection, as several research works have demonstrated in a pre-clinical setting, since it is able to provide attenuation, differential phase contrast, and scattering images simultaneously. In order to translate this technique to the clinics, it has to be adapted to cover a large field-of-view within a clinically acceptable exposure time and radiation dose. Methods We set up a grating interferometer that fits into a standard mammography system and fulfilled the aforementioned conditions. Here, we present the first mastectomy images acquired with this experimental device. Results and conclusion Our system performs at a mean glandular dose of 1.6 mGy for a 5-cm-thick, 18%-dense breast, and a field-of-view of 26 × 21 cm2. It seems to be well-suited as basis for a clinical-environment device. Further, dark-field signals seem to support an improved lesion visualization. Evidently, the effective impact of such indications must be evaluated and quantified within the context of a proper reader study. Key Points • Grating-interferometry-based mammography (GIM) might facilitate breast cancer detection, since it is sensitive to refraction and scattering and thus provides additional tissue information. • The most straightforward way to do grating-interferometry in the clinics is to modify a standard mammography device. • In a first approximation, the doses given with this technique seem to be similar to those of conventional mammography.
An X-ray grating interferometer (GI) suitable for clinical mammography must comply with quite strict dose, scanning time and geometry limitations, while being able to detect tumors, microcalcifications and other abnormalities. Such a design task is not straightforward, since obtaining optimal phase-contrast and dark-field signals with clinically compatible doses and geometrical constraints is remarkably challenging. In this work, we present a wave propagation based optimization that uses the phase and dark-field sensitivities as figures of merit. This method was used to calculate the optimal interferometer designs for a commercial mammography setup. Its accuracy was validated by measuring the visibility of polycarbonate samples of different thicknesses on a Talbot-Lau interferometer installed on this device and considering some of the most common grating imperfections to be able to reproduce the experimental values. The optimization method outcomes indicate that small grating pitches are required to boost sensitivity in such a constrained setup and that there is a different optimal scenario for each signal type.
Among the existent X-ray phase-contrast modalities, grating interferometry appears as a very promising technique for commercial applications, since it is compatible with conventional X-ray tubes and is robust from a mechanical point of view. However, since applications such as medical imaging and homeland security demand covering a considerable field of view, the fabrication of large-area gratings, which is known to be challenging and expensive, would be needed. A scanning setup is a good solution for this issue, because it uses cheaper line instead of large-area 2D detectors and, therefore, would require smaller gratings. In such a setup, the phase-retrieval using the conventional phase-stepping approach would be very slow, so having a faster method to record the signals becomes fundamental. To tackle this problem, we present a scanning-mode grating interferometer design, in which a grating is tilted to form Moiré fringes perpendicular to the grating lines. The sample is then translated along the fringes, so each line detector records a different phase step for each slice of the sample. This new approach was tested both in a simulated scenario and in an experimental setting, and its performance was quantitatively satisfactory compared to the traditional phase-stepping method and another existing scanning-mode technique. Abstract: Among the existent X-ray phase-contrast modalities, grating interferometry appears as a very promising technique for commercial applications, since it is compatible with conventional X-ray tubes and is robust from a mechanical point of view. However, since applications such as medical imaging and homeland security demand covering a considerable field of view, the fabrication of large-area gratings, which is known to be challenging and expensive, would be needed. A scanning setup is a good solution for this issue, because it uses cheaper line instead of large-area 2D detectors and, therefore, would require smaller gratings. In such a setup, the phase-retrieval using the conventional phase-stepping approach would be very slow, so having a faster method to record the signals becomes fundamental. To tackle this problem, we present a scanning-mode grating interferometer design, in which a grating is tilted to form Moiré fringes perpendicular to the grating lines. The sample is then translated along the fringes, so each line detector records a different phase step for each slice of the sample. This new approach was tested both in a simulated scenario and in an experimental setting, and its performance was quantitatively satisfactory compared to the traditional phase-stepping method and another existing scanning-mode technique.
This article describes a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements using the Born approximation and a full tensor treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.