BackgroundWe consider the problem of optimizing a liposomal drug formulation: a complex chemical system with many components (e.g., elements of a lipid library) that interact nonlinearly and synergistically in ways that cannot be predicted from first principles.Methodology/Principal FindingsThe optimization criterion in our experiments was the percent encapsulation of a target drug, Amphotericin B, detected experimentally via spectrophotometric assay. Optimization of such a complex system requires strategies that efficiently discover solutions in extremely large volumes of potential experimental space. We have designed and implemented a new strategy of evolutionary design of experiments (Evo-DoE), that efficiently explores high-dimensional spaces by coupling the power of computer and statistical modeling with experimentally measured responses in an iterative loop.ConclusionsWe demonstrate how iterative looping of modeling and experimentation can quickly produce new discoveries with significantly better experimental response, and how such looping can discover the chemical landscape underlying complex chemical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.