The K-Cl cotransporter KCC2 plays an essential role in neuronal chloride homeostasis, and thereby influences the efficacy and polarity of GABA signaling. Although KCC2 is expressed throughout the somatodendritic membrane, it is remarkably enriched in dendritic spines, which host most glutamatergic synapses in cortical neurons. KCC2 has been shown to influence spine morphogenesis and functional maturation in developing neurons, but its function in mature dendritic spines remains unknown. Here, we report that suppressing KCC2 expression decreases the efficacy of excitatory synapses in mature hippocampal neurons. This effect correlates with a reduced postsynaptic aggregation of GluR1-containing AMPA receptors and is mimicked by a dominant negative mutant of KCC2 interaction with cytoskeleton but not by pharmacological suppression of KCC2 function. Single-particle tracking experiments reveal that suppressing KCC2 increases lateral diffusion of the mobile fraction of AMPA receptor subunit GluR1 in spines but not in adjacent dendritic shafts. Increased diffusion was also observed for transmembrane but not membrane-anchored recombinant neuronal cell adhesion molecules. We suggest that KCC2, likely through interactions with the actin cytoskeleton, hinders transmembrane protein diffusion, and thereby contributes to their confinement within dendritic spines.T he neuronal K-Cl cotransporter KCC2 transports chloride using the electrochemical gradient of K + ions (1). In mature neurons, this action maintains a low intraneuronal chloride concentration that ensures a hyperpolarizing effect of GABA at chloride-permeable GABA A receptors. KCC2 expression, activity, and membrane traffic are tightly regulated by neuronal activity, particularly through the phosphorylation of its carboxylterminal domain (CTD) (2-4). Activation of postsynaptic glutamate receptors, for instance, reduces KCC2 activity through dephosphorylation and endocytosis within minutes (3, 5). KCC2 expression is also suppressed in pathological conditions associated with enhanced neuronal activity (6), leading to a rise in intraneuronal chloride and an alteration of GABA function (7-9). KCC2 therefore appears to mediate a functional cross-talk between synaptic excitation and inhibition in neurons.Although KCC2 function primarily influences the efficacy of GABAergic signaling, its presence in dendritic spines (10) raises the question of its role in spine morphogenesis and function. Genetic ablation of KCC2 in mice compromises spine maturation and excitatory synapse formation in immature hippocampal neurons (11). This effect appears to be independent of KCC2 function but, instead, involves KCC2 interaction with the neuronal FERM-domain protein 4.1N (12). However, KCC2 expression is up-regulated during postnatal development and is maximal in mature neurons (13), after spine formation, where its role in the maintenance and function of dendritic spines remains unknown. Here, we show that suppression of KCC2 after spine morphogenesis reduces postsynaptic glutamate recept...
Key points• Parvalbumin-expressing interneurons represent a major source of inhibition of CA1 hippocampal principal cells and influence both spike timing precision and network oscillations.• These interneurons receive both feed-forward and feedback excitatory inputs which recruit them in the hippocampal network.• In this study, we compared the functional properties of these two inputs and how they may be modified by neuronal activity.• We show that calcium-permeable AMPA receptors and NMDA receptors are differentially distributed at feed-forward versus feedback inputs and act as coincidence detectors of opposing modalities.• Our results reveal that the two major excitatory inputs onto CA1 parvalbumin-expressing interneurons undergo long term plasticity with different frequency regimes of afferent activity, which is likely to influence their function under both normal and pathological conditions.Abstract Hippocampal parvalbumin-expressing interneurons (PV INs) provide fast and reliable GABAergic signalling to principal cells and orchestrate hippocampal ensemble activities. Precise coordination of principal cell activity by PV INs relies in part on the efficacy of excitatory afferents that recruit them in the hippocampal network. Feed-forward (FF) inputs in particular from Schaffer collaterals influence spike timing precision in CA1 principal cells whereas local feedback (FB) inputs may contribute to pacemaker activities. Although PV INs have been shown to undergo activity-dependent long term plasticity, how both inputs are modulated during principal cell firing is unknown. Here we show that FF and FB synapses onto PV INs are endowed with distinct postsynaptic glutamate receptors which set opposing long-term plasticity rules. Inward-rectifying AMPA receptors (AMPARs) expressed at both FF and FB inputs mediate a form of anti-Hebbian long term potentiation (LTP), relying on coincident membrane hyperpolarization and synaptic activation. In contrast, FF inputs are largely devoid of NMDA receptors (NMDARs) which are more abundant at FB afferents and confer on them an additional form of LTP with Hebbian properties. Both forms of LTP are expressed with no apparent change in presynaptic function. The specific endowment of FF and FB inputs with distinct coincidence detectors allow them to be differentially tuned upon high frequency afferent activity. Thus, high frequency (>20 Hz) stimulation specifically potentiates FB, but not FF afferents. We propose that these differential,
Serotonergic neurons of the raphe nuclei exhibit anatomical, neurochemical and elecrophysiological heterogeneity that likely underpins their specific role in multiple behaviors. However, the precise organization of serotonin (5-HT) neurons to orchestrate 5-HT release patterns throughout the brain is not well understood. We compared the electrophysiological and neurochemical properties of dorsal and median raphe 5-HT neurons projecting to the medial prefrontal cortex (mPFC), amygdala (BLA) and dorsal hippocampus (dHP), combining retrograde tract tracing with brain slice electrophysiology and single-cell RT-PCR in Pet1-EGFP mice. Our results show that 5-HT neurons projecting to the dHP and the mPFC and the BLA form largely non-overlapping populations and that BLA-projecting neurons have characteristic excitability and membrane properties. In addition, using an unbiased clustering method that correlates anatomical, molecular and electrophysiological phenotypes, we find that 5-HT neurons with projections to the mPFC and the dHP segregate from those projecting to the BLA. Single-cell gene profiling showed a restricted expression of the peptide galanin in the population of 5-HT neurons projecting to the mPFC. Finally, cluster analysis allowed identifying an atypical subtype of 5-HT neuron with low excitability, long firing delays and preferential expression of the vesicular glutamate transporter type 3. Overall, these findings allow to define correlated anatomical and physiological identities of serotonin raphe neurons that help understanding how discrete raphe cells subpopulations account for the heterogeneous activities of the midbrain serotonergic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.