Pterins, heterocyclic compounds widespread in biological systems, accumulate in the skin of patients suffering from vitiligo, a chronic depigmentation disorder. Pterins have been previously identified as good photosensitizers under UV-A irradiation. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the oxidation of tyrosine (Tyr) in aqueous solutions. Tyr is an important target in the study of the photodynamic effects of UV-A radiation because it is oxidized by singlet oxygen ((1)O2) and plays a key role in polymerization and cross-linking of proteins. Steady UV-A irradiation of solutions containing Ptr and Tyr led to the consumption of Tyr and dissolved O2, whereas the Ptr concentration remained unchanged. Concomitantly, hydrogen peroxide (H2O2) was produced. By combining different analytical techniques, we could establish that the mechanism of the photosensitized process involves an electron transfer from Tyr to the triplet excited state of Ptr. Mass spectrometry, chromatography and fluorescence were used to analyze the photoproducts. In particular, oxygenated and dimeric compounds were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.