BackgroundMicrobial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function.FindingsBASE currently provides amplicon sequences and associated contextual data for over 900 sites encompassing all Australian states and territories, a wide variety of bioregions, vegetation and land-use types. Amplicons target bacteria, archaea and general and fungal-specific eukaryotes. The growing database will soon include metagenomics data. Data are provided in both raw sequence (FASTQ) and analysed OTU table formats and are accessed via the project’s data portal, which provides a user-friendly search tool to quickly identify samples of interest. Processed data can be visually interrogated and intersected with other Australian diversity and environmental data using tools developed by the ‘Atlas of Living Australia’.ConclusionsDeveloped within an open data framework, the BASE project is the first Australian soil microbial diversity database. The database will grow and link to other global efforts to explore microbial, plant, animal, and marine biodiversity. Its design and open access nature ensures that BASE will evolve as a valuable tool for documenting an often overlooked component of biodiversity and the many microbe-driven processes that are essential to sustain soil function and ecosystem services.
Wolbachia are intracellular, maternally inherited bacteria with an impressive history of adaptation to intracellular lifestyles. Instead of adapting to a single host lineage, Wolbachia evolved ways to jump across host species and establish relatively stable associations maintained through vertical transmission. Wolbachia are capable of manipulating the reproduction of infected hosts in a remarkable way. Traditionally, such reproductive manipulations have been regarded as the general mechanism by which Wolbachia spread through host populations. Recent evidence suggests that Wolbachia-host interactions are more complex than previously thought and may be driven by the onset and resolution of conflicts of interest. Here, we discuss how reproductive manipulation phenotypes may be transient. As the host adapts to infection, manipulation phenotypes attenuate and the continuity of the symbioses may rely on the physiological advantages Wolbachia may confer to their host. For facultative symbionts, such benefits are likely to be dependent on the environment. Here, we also review evidence that supports the view of environment-dependent facultative mutualism as a stable evolutionary outcome of Wolbachia infections beside extinction and obligate symbioses. Finally, our current understanding of the biology of mitochondria and Wolbachia unravels remarkable parallels in the way they interact with the nuclear genome. Great insights into both the Wolbachia and mitochondrial research fields can be revealed if such fields are considered to be overlapping, rather than independent from each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.