Dietary polyphenols present in a broad range of plant foods have been related to beneficial health effects. This review aims to update the current information about the modulation of the gut microbiota by dietary phenolic compounds, from a perspective based on the experimental approaches used. After referring to general aspects of gut microbiota and dietary polyphenols, studies related to this topic are presented according to their experimental design: batch culture fermentations, gastrointestinal simulators, animal model studies, and human intervention studies. In general, studies evidence that dietary polyphenols may contribute to the maintenance of intestinal health by preserving the gut microbial balance through the stimulation of the growth of beneficial bacteria (i.e., lactobacilli and bifidobacteria) and the inhibition of pathogenic bacteria, exerting prebiotic-like effects. Combination of in vitro and in vivo models could help to understand the underlying mechanisms in the polyphenols-microbiota-host triangle and elucidate the implications of polyphenols on human health. From a technological point of view, supplementation with rich-polyphenolic stuffs (phenolic extracts, phenolic-enriched fractions, etc.) could be an effective option to improve health benefits of functional foods such as the case of dairy fermented foods.
With the aim of investigating the potential of flavan-3-ols to influence the growth of intestinal bacterial groups, we have carried out the in vitro fermentation, with human faecal microbiota, of two purified fractions from grape seed extract (GSE): GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78% procyanidins). Samples were collected at 0, 5, 10, 24, 30 and 48 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and for analysis of phenolic metabolites. Both GSE-M and GSE-O fractions promoted growth of Lactobacillus/Enterococcus and decrease in the Clostridium histolyticum group during fermentation, although the effects were only statistically significant with GSE-M for Lactobacillus/Enterococcus (at 5 and 10 h of fermentation) and GSE-O for C. histolyticum (at 10 h of fermentation). Main changes in polyphenol catabolism also occurred during the first 10 h of fermentation; however, no significant correlation coefficients (P > 0.05) were found between changes in microbial populations and precursor flavan-3-ols or microbial metabolites. Together, these data suggest that the flavan-3-ol profile of a particular food source could affect the microbiota composition and its catabolic activity, inducing changes that could in turn affect the bioavailability and potential bioactivity of these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.