Summary For many arthropod vectors, the diverse bacteria and fungi that inhabit the gut can negatively impact pathogen colonization. Our attempts to exploit antibiotic treatment of colonized Phlebotomus duboscqi sand flies in order to improve their vector competency for Leishmania major resulted instead in flies that were refractory to the development of transmissible infections that was due to the inability of the parasite to differentiate into the infective, metacyclic stage. The parasite development defect could be overcome by feeding the flies on different symbiont bacteria but not by feeding them on bacterial supernatants or replete medium. The inhibitory effect of the antibiotic treatment was moderated by maintaining the flies on a lower concentration of sucrose in their sugar meals. The data suggest that competing sucrose utilization by the microbiota produces the appropriate nutrient stress and osmotic conditions required for stage differentiation and survival of infectious metacyclic promastigotes in vivo.
BackgroundParasites of the genus Leishmania cause a broad spectrum of diseases, collectively known as leishmaniasis, in humans worldwide. American cutaneous leishmaniasis is a neglected disease transmitted by sand fly vectors including Lutzomyia intermedia, a proven vector. The female sand fly can acquire or deliver Leishmania spp. parasites while feeding on a blood meal, which is required for nutrition, egg development and survival. The microbiota composition and abundance varies by food source, life stages and physiological conditions. The sand fly microbiota can affect parasite life-cycle in the vector.MethodsWe performed a metagenomic analysis for microbiota composition and abundance in Lu. intermedia, from an endemic area in Brazil. The adult insects were collected using CDC light traps, morphologically identified, carefully sterilized, dissected under a microscope and the females separated into groups according to their physiological condition: (i) absence of blood meal (unfed = UN); (ii) presence of blood meal (blood-fed = BF); and (iii) presence of developed ovaries (gravid = GR). Then, they were processed for metagenomics with Illumina Hiseq Sequencing in order to be sequence analyzed and to obtain the taxonomic profiles of the microbiota.ResultsBacterial metagenomic analysis revealed differences in microbiota composition based upon the distinct physiological stages of the adult insect. Sequence identification revealed two phyla (Proteobacteria and Actinobacteria), 11 families and 15 genera; 87 % of the bacteria were Gram-negative, while only one family and two genera were identified as Gram-positive. The genera Ochrobactrum, Bradyrhizobium and Pseudomonas were found across all of the groups.ConclusionsThe metagenomic analysis revealed that the microbiota of the Lu. intermedia female sand flies are distinct under specific physiological conditions and consist of 15 bacterial genera. The Ochrobactrum, Bradyrhizobium and Pseudomonas were the common genera. Our results detailing the constituents of Lu. intermedia native microbiota contribute to the knowledge regarding the bacterial community in an important sand fly vector and allow for further studies to better understand how the microbiota interacts with vectors of human parasites and to develop tools for biological control.
The microbial consortium associated with sandflies has gained relevance, with its composition shifting throughout distinct developmental stages, being strongly influenced by the surroundings and food sources. The bacterial components of the microbiota can interfere with Leishmania development inside the sandfly vector. Microbiota diversity and host-microbiota-pathogen interactions regarding New World sandfly species have yet to be thoroughly studied, particularly in Lutzomyia longipalpis, the primary vector of visceral leishmaniasis in Brazil.The native microbiota of different developmental stages and physiological conditions of Lu. longipalpis (Lapinha Cave), was described by culturing and 16s rRNA gene sequencing. The 16s rRNA sequencing of culture-dependent revealed 13 distinct bacterial genera (Bacillus,
BackgroundSandflies are vectors of Leishmania, the causative agent of leishmaniasis in mammalian hosts, including humans. The protozoan parasite is transmitted by the sandfly bite during salivation that occurs at the moment of blood feeding. The components of vector saliva include anticlotting and vasodilatory factors that facilitate blood flow and immunomodulatory factors that inhibit wound healing and quell the immune response. Not surprisingly, these factors also play important roles in the establishment of Leishmania infection. To date, the majority of knowledge that has been generated regarding the process of Leishmania infection, including L. infantum chagasi transmission has been gathered by using intradermal or subcutaneous inoculation of purified parasites.FindingsThis study presents the establishment of a transmission model of Leishmania infantum chagasi by the bite of Lutzomyia longipalpis, the vector of American visceral leishmaniasis. The parasites were successfully transmitted by infected sandfly bites to mice and hamsters, indicating that both animals are good experimental models. The L. infantum chagasi dose that was transmitted in each single bite ranged from 10 to 10, 000 parasites, but 75% of the sandflies transmitted less than 300 parasites.ConclusionsThe strategy for initiating infection by sandfly bite of experimental animals facilitates future investigations into the complex and dynamic mechanisms of visceral leishmaniasis. It is important to elucidate the transmission mechanism of vector bites. This model represents a useful tool to study L. infantum chagasi infection transmitted by the vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.