Bradyrhizobium diazoefficiens, a soybean N 2 -fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2, whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR (lateral-flagellar regulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbT L , a class III regulator. We observed different requirements for FlbT L in the synthesis of each flagellin subunit. Although the accumulation of lafA1, but not lafA2, transcripts required FlbT L , the production of both flagellin polypeptides required FlbT L . Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species.IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens, an N 2 -fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics.KEYWORDS Bradyrhizobium, flagella, expression, lafR, flbT, FlbT, LafR F lagellum-driven swimming motility-a characteristic trait of many bacterial species-is essential for the colonization of diverse niches in environments such as seas, freshwaters, sediments, soils, and the organs of plant or animal hosts. This form of bacterial locomotion requires the propulsion provided by flagella, as well as a guidance system mediated by chemotaxis (1).Flagella are complex organelles formed by three main structures: a basal body that anchors the flagellum to the cell envelope...
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction. IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system’s fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.