The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.