Eight strains belonging to Lactobacillus spp. and five to Enterococcus spp. were isolated from the gut of worker Apis mellifera L. bees. Studies based on 16S rRNA sequencing revealed that AJ5, IG9, A15 and CRL1647 strains had a 99% identity with Lactobacillus johnsonii, while SM21 showed a 99% similarity with Enterococcus faecium. L. johnsonii CRL1647, AJ5 and IG9 were high lactic acid producers (values were between 177 and 275 mM), and in vitro they inhibited different human food-borne pathogens and Paenibacillus larvae, the American foulbrood agent. This bacterium was the most sensitive to the lactic acid effect being inhibited by 44 mM of this metabolite. L. johnsonii CRL1647, AJ5 and IG9 also presented important surface properties. These cells showed between 77% and 93% of auto-aggregation. The preliminary study of the chemical nature of the aggregating factors revealed that the molecules involved in the surface of each L. johnsonii strain were quite complex; and something of a peptidic nature was mainly involved. E. faecium SM21 produced bacteriocin-like compounds with anti-Listeria effects. Furthermore, a band close to 6.0-7.5 kDA was detected by SDS-PAGE studies, and the entA, B and P structural genes were amplified by PCR reactions. For the first time, bee-gut associated L. johnsonii and E. faecium strains have been isolated, identified, cultivated and some of their functional properties reported.
Nosemosis, a disease caused by a microsporidian infection, is one of the most frequently observed parasitic pathologies affecting adult honeybees. Presently, Nosema ceranae seems to be the main microsporidian infection in Apis mellifera. The antibiotic fumagillin is the only compound available to treat Nosema diseases; however, it is no longer licensed in most EU member states; therefore, the need to identify new molecules/substances prevails. The intent of this paper is to test bacterial metabolites by Bacillus and Enterococcus strains, isolated from bee midgut and honey. The toxicity on bees and the antiparasitic activity on N. ceranae were assessed under laboratory conditions. Results did not yield toxicity for the administered surfactin or bacteriocin concentrations. Spores exposed to direct contact with a particular surfactin revealed a significant infectivity reduction when inoculated on bees. This surfactin, administered ad libitum from the individuals' emergence, led to a significant reduction in parasitosis development when bees were infected with untreated spores 7 days postemergence. Based on the results obtained, one of the surfactins is herein postulated as a molecule capable of reducing N. ceranae development, acting either by direct exposure to purified spores or incorporated into the digestive tract of the bee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.