Green tea polyphenols (TEA) are known to exhibit antioxidative activity as well as tumor-suppressing activity. In order to examine the tumor-suppressing activity of TEA against adult T-cell leukemia (ATL), we cultivated peripheral blood T lymphocytes of ATL patients (ATL PBLs), an HTLV-I-infected T-cell line (KODV) and healthy controls (normal PBLs) for 3 days in the presence of TEA and its main constituent, epigallocatechin-3-gallate (EGCg), to measure cell proliferation and apoptosis, and to quantitate mRNAs of HTLV-I pX and β β β β-actin genes of the cultured cells.
Growth of ATL
Alkyl β-D-xylopyranosides are highly surface active, biodegradable surfactants that can be prepared from hemicelluloses and are of interest for use as pharmaceuticals, detergents, agrochemicals and personal care products. To gain further insights into their structure-property and structure-activity relationships, the present study synthesized a series of hydrocarbon (-C6H13 to -C16H33) and fluorocarbon (-(CH2)2C6F13) alkyl β-D-xylopyranosides in four steps from D-xylose by acylation or benzoylation, bromination, Koenigs-Knorr reaction and hydrolysis, with the benzoyl protecting group giving better yields compared to the acyl group in the Koenigs-Knorr reaction. All alkyl β-D-xylopyranosides formed thermotropic liquid crystals. The phase transition of the solid crystalline phase to a liquid crystalline phase increased linearly with the length of the hydrophobic tail. The clearing points were near constant for alkyl β-D-xylopyranosides with a hydrophobic tail ≥ 8, but occurred at a significantly lower temperature for hexyl β-D-xylopyranoside. Short and long-chain alkyl β-D-xylopyranosides displayed no cytotoxicity at concentration below their aqueous solubility limit. Hydrocarbon and fluorocarbon alkyl β-D-xylopyranosides with intermediate chain length displayed some toxicity at millimolar concentrations due to apoptosis.
Chagas disease affects 8-11 million people, mostly in Latin America. Sequelae include cardiac, peripheral nervous and/or gastrointestinal disorders, thus placing a large economic and social burden on endemic countries. The pathogenesis and the evolutive pattern of the disease are not fully clarified. Moreover, available drugs are partially effective and toxic, and there is no vaccine. Therefore, there is an urgent need to speed up basic and translational research in the field. Here, we applied automated high-content imaging to generate multiparametric data on a cell-by-cell basis to precisely and quickly determine several parameters associated with in vitro infection of host-cell by Trypanosoma cruzi, the causative agent of Chagas disease. Automated and manual quantification was used to determine the percentage of T. cruzi-infected cells in a 96-well microplate format and the data generated was statistically evaluated. Most importantly, this automated approach can be widely applied for discovery of potential drugs as well as molecular pathway elucidation not only in T. cruzi but also other human intracellular pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.