Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR during Leishmania amazonensis infection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 mM) increased L. amazonensis infectivity in an IFN1-a receptor (IFNAR)-dependent manner. In Western blot assays, we showed that L. amazonensis activates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for the Ifnb gene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-b expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude that L. amazonensis activation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-b expression.-
Calcifying organisms are considered as threatened by ocean acidification, because of their calcium carbonate skeleton. This study investigated if a calcareous sponge could synthesize its skeleton (i.e. spicules) under ocean-acidification conditions. Sponge cell aggregates that have the potential to develop into a functional sponge, called primmorphs, were submitted to a 5-day experiment, with two treatments: control (pH 8.1) and acidified conditions (pH 7.6). Primmorphs of the calcareous sponge Paraleucilla magna were able to synthesize a skeleton, even under low pH, and to develop into functional sponges. The spicules had the same shape in both conditions, although the spicules synthesized in low pH were slightly thinner than those in the control. These results suggest that P. magna may be able to survive near-future ocean-acidification conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.