S U M M A R YWe complete the development and description of a thermodynamic method for the computation of phase equilibria and physical properties of multiphase mantle assemblages. Our previous paper focused on the computation of physical properties. In this paper, our focus shifts to the phase equilibria. We further develop our theory to specify the ideal and excess contributions to solution properties and derive properties of multiphase assemblages. We discuss our global inversion strategy for determining the values of the free parameters in our theory and compare inverted parameter values with expectations based on scaling arguments. Comparisons between our method and experimental phase equilibria data encompass the pressure-temperature regime of Earth's mantle. Finally, we present applications of our method that illustrate how it may be used to explore the origins of mantle structure and mantle dynamics. Continuing rapid advances in experimental and theoretical petrology and mineral physics have motivated an expansion of the scope of our model via the addition of several new phases, and of the soda component: an appendix lists all parameters in our model and references to the experimental and theoretical studies that constrain them. Our algorithm for global minimization of the Gibbs free energy is embodied in a code called HeFESTo, and is detailed in a second appendix.
S U M M A R YWe present a theory for the computation of phase equilibria and physical properties of multicomponent assemblages relevant to the mantle of the Earth. The theory differs from previous treatments in being thermodynamically self-consistent: the theory is based on the concept of fundamental thermodynamic relations appropriately generalized to anisotropic strain and in encompassing elasticity in addition to the usual isotropic thermodynamic properties. In this first paper, we present the development of the theory, discuss its scope, and focus on its application to physical properties of mantle phases at elevated pressure and temperature including the equation of state, thermochemical properties and the elastic wave velocities. We find that the Eulerian finite strain formulation captures the variation of the elastic moduli with compression. The variation of the vibrational frequencies with compression is also cast as a Taylor series expansion in the Eulerian finite strain, the appropriate volume derivative of which leads to an expression for the Grüneisen parameter that agrees well with results from first principles theory. For isotropic materials, the theory contains nine material-specific parameters: the values at ambient conditions of the Helmholtz free energy, volume, bulk and shear moduli, their pressure derivatives, an effective Debye temperature, its first and second logarithmic volume derivatives (γ 0 , q 0 ), and the shear strain derivative of γ . We present and discuss in some detail the results of a global inversion of a wide variety of experimental data and first principles theoretical results, supplemented by systematic relations, for the values of these parameters for 31 mantle species. Among our findings is that the value of q is likely to be significantly greater than unity for most mantle species. We apply the theory to the computation of the shear wave velocity, and temperature and compositional (Fe content) derivatives at relevant mantle pressure temperature conditions. Among the patterns that emerge is that garnet is anomalous in being remarkably insensitive to iron content or temperature as compared with other mantle phases.The tools and concepts of thermodynamics are an essential part of any model of planetary evolution, dynamics and structure. The relationship between the internal heat and temperature of a planet as it cools, between temperature and the buoyancy that drives convection, and the extent and consequences of gravitational self-compression are all governed by equilibrium physical properties and understood on the basis of thermodynamics. Thermodynamics is powerful because its scope is so vast; applicable not only to planets but equally to black holes and laboratory samples. This extreme generality also means that the theory must be supplemented with particular knowledge of the materials of interest, values of key physical quantities, and their variations with pressure, temperature and bulk composition.The materials and conditions of the interior of the Earth present severa...
Abstract. Our understanding of the dynamics of plate motions is based almost entirely upon modeling of present-day plate motions. A fuller understanding, however, can be derived from consideration of the history of plate motions. Here we investigate the kinematics of the last 120 Myr of plate motions and the dynamics of Cenozoic motions, paying special attention to changes in the character of plate motions and plate-driving forces. We analyze the partitioning of the observed surface velocity field into toroidal (transform/spin) and poloidal (spreading/subduction) motions. The present-day field is not equipartitioned in poloidal and toroidal components; toroidal motions account for only one third of the total. The toroidal/poloidal ratio has changed substantially in the last 120 Myr with poloidal motion decreasing significantly after 43 Ma while toroidal motion remains essentially constant; this result is not explained by changes in plate geometry alone. We develop a selfconsistent model of plate motions by (1) constructing a straightforward model of mantle density heterogeneity based largely upon subduction history and then (2) calculating the induced plate motions for each stage of the Cenozoic. The "slab" heterogeneity model compares rather well with seismic heterogeneity models, especially away from the thermochemical boundary layers near the surface and core-mantle boundary. The slab model predicts the observed geoid extremely well, although comparison between predicted and observed dynamic topography is ambiguous. The midmantle heterogeneities that explain much of the observed seismic heterogeneity and geoid are derived largely from late Mesozoic and early Cenozoic subduction, when subduction rates were much higher than they are at present. The plate motion model itself successfully predicts Cenozoic plate motions (global correlations of 0.7-0.9) for mantle viscosity structures that are consistent with a variety of geophysical studies. We conclude that the main plate-driving forces come from subducted slabs (>90%), with forces due to lithospheric effects (e.g., oceanic plate thickening) providing a very minor component (<10%). For whole mantle convection, most of the slab buoyancy forces are derived from lower mantle slabs. Unfortunately, we cannot reproduce the toroidal/poloidal partitioning ratios observed for the Cenozoic, nor do our models explain apparently sudden plate motion changes that define stage boundaries. The most conspicuous failure is our inability to reproduce the westward jerk of the Pacific plate at 43 Ma implied by the great bend in the Hawaiian-Emperor seamount chain. Our model permits an interesting test of the hypothesis that the collision of India with Asia may have caused the Hawaiian-Emperor bend. However, we find that this collision has no effect on the motion of the Pacific plate, implying that important plate boundary effects are missing in our models. Future progress in understanding global plate motions requires (1) more complete plate reconstruction information, including, es...
Using Cenozoic and Mesozoic plate motion reconstructions, we derive a model of present-day mantle density heterogeneity under the assumption that subducted slabs sink vertically into the mantle. The thermal buoyancy of these slabs is estimated from the observed thermal subsidence (cooling) of oceanic lithosphere. Slat) velocities in the upper mantle are computed from the local convergence rate. We assume that slabs cross the upper/lower mantle interface and continue sinking into the lower mantle witIx a reduced velocity. For a velocity reduction factor between :2 and 5, our slab heterogeneity model is as correlated with current tomographic models as these models are correlated with each other. We have also computed a synthetic geoid from our density model. For a viscosity increase of about a factor of 40 from the upper to lower mantle, our model predicts the first 8 spherical harmonic degrees of the geoid witIx statistical confidence larger than 95% and explains 84% of the observed geoid assuming that the model C21 and S21 terms are absent due to a long relaxation time for Earth's rotational bulge. Otherwise, 73% of the geoid variance is explained. The viscosity increase is consistent witIx our velocity reduction factor for slabs entering the lower mantle, since downwelling velocities are expected to scale roughly as the logarithm of viscosity (loge 40 -3.7). These results show that the history of plate tectonics can explain the main features of the present-day structure of the mantle. The dynamic topography induced by this heterogeneity structure consists mainly of about 1-kin amplitude lows concentrated along the active continental margins of the Pacific basin. Our model can also be used to predict the time variation of mantle heterogeneity and the gravity field. We find that the "age" of the geoid, defined as the time in the past herore which the geoid becomes uncorrelated witIx the present geoid, is about 50 m.y. Our model for the history of the degree 2 geoid, which is equivalent to the history of the inertia tensor, should give us a tool to study the variations in Earth's rotation pole indicated in paleomagnetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.