Ingested or penetrating foreign bodies are common in veterinary medicine. When they are radiolucent, these objects become a diagnostic challenge, but they can be investigated sonographically. However, successful object identification depends on the skill of the sonographer. Considering that these cases appear randomly during hospital routines, it is not always possible to train all students to identify them correctly. Therefore, the aim of this study was to produce homemade simulations of radiolucent foreign bodies for veterinary student demonstrations that could be identified sonographically and to evaluate the acceptability, applicability, and usefulness of these simulations according to a visual analog scale questionnaire and subjective questions. For this purpose, object models (a pacifier nipple, a toy ball, a sock, nylon thread, and a mango seed) were designed, produced, and immersed in gelatin. To simulate wood splinters in the integumentary and musculoskeletal system, a piece of meat punctured with a toothpick and ice cream stick splinters were used. The type of phantom had a determinant effect on the visualization (chi-square = 36.528, P< 0.0001) and recognition (chi-square = 18.756, P = 0.0021) capability of the students. All of the students answered that their experience with the models could help in real situations. The student responses to the questionnaire indicated that the project was well accepted, and the participants believed that this experience could be applicable to and useful in veterinary routines.
Pericardial effusion can lead to cardiac tamponade, which endangers an animal's life. Ultrasound-guided pericardiocentesis is used to remove abnormal liquid; however, it requires technical expertise. In veterinary medical education, the opportunity to teach this procedure to save lives during emergencies is rare; therefore, simulators are recommended for this practice. The present study aimed to create a model that can be made "at home" at low cost for ultrasound-guided pericardiocentesis training and to gather feedback about this model through questionnaires given to the participants. Eighteen professionals and thirty-six students were introduced to the simulator in pairs. After the simulation training session, participants filled out the questionnaire. Participants considered the model strong in the following areas: visualization of the pericardium, the heart, fluid in the pericardium, and fluid decrease during fictitious pericardiocentesis and its realism. They considered the model weak or moderate in the following areas: visualization of the surrounding tissues, difficulty of pericardial puncture, and visualization of the catheter. The professionals classified the realism of the experimental heart as moderate, whereas the undergraduate students classified it as strong. All participants believed that the experimental model could be useful in preparing for a future real situation. This model fulfills the need for a practical, realistic, and cost-effective model for ultrasound-guided pericardiocentesis training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.