Zarankiewicz's Conjecture (ZC) states that the crossing number cr$(K_{m,n})$ equals $Z(m,n):=\lfloor{\frac{m}{2}}\rfloor \lfloor{\frac{m-1}{2}}\rfloor \lfloor{\frac{n}{2}}\rfloor \lfloor{\frac{n-1}{2}}\rfloor$. Since Kleitman's verification of ZC for $K_{5,n}$ (from which ZC for $K_{6,n}$ easily follows), very little progress has been made around ZC; the most notable exceptions involve computer-aided results. With the aim of gaining a more profound understanding of this notoriously difficult conjecture, we investigate the optimal (that is, crossing-minimal) drawings of $K_{5,n}$. The widely known natural drawings of $K_{m,n}$ (the so-called Zarankiewicz drawings) with $Z(m,n)$ crossings contain antipodal vertices, that is, pairs of degree-$m$ vertices such that their induced drawing of $K_{m,2}$ has no crossings. Antipodal vertices also play a major role in Kleitman's inductive proof that cr$(K_{5,n}) = Z(5,n)$. We explore in depth the role of antipodal vertices in optimal drawings of $K_{5,n}$, for $n$ even. We prove that if {$n \equiv 2$ (mod $4$)}, then every optimal drawing of $K_{5,n}$ has antipodal vertices. We also exhibit a two-parameter family of optimal drawings $D_{r,s}$ of $K_{5,4(r+s)}$ (for $r,s\ge 0$), with no antipodal vertices, and show that if $n\equiv 0$ (mod $4$), then every optimal drawing of $K_{5,n}$ without antipodal vertices is (vertex rotation) isomorphic to $D_{r,s}$ for some integers $r,s$. As a corollary, we show that if $n$ is even, then every optimal drawing of $K_{5,n}$ is the superimposition of Zarankiewicz drawings with a drawing isomorphic to $D_{r,s}$ for some nonnegative integers $r,s$.
Let D be a knot diagram, and let D denote the set of diagrams that can be obtained from D by crossing exchanges. If D has n crossings, then D consists of 2 n diagrams. A folklore argument shows that at least one of these 2 n diagrams is unknot, from which it follows that every diagram has finite unknotting number. It is easy to see that this argument can be used to show that actually D has more than one unknot diagram, but it cannot yield more than 4n unknot diagrams. We improve this linear bound to a superpolynomial bound, by showing that at least 2 3 √ n of the diagrams in D are unknot. We also show that either all the diagrams in D are unknot, or there is a diagram in D that is a diagram of the trefoil knot. arXiv:1710.06470v1 [math.CO]
Let L be a fixed link. Given a link diagram D, is there a sequence of crossing exchanges and smoothings on D that yields a diagram of L? We approach this problem from the computational complexity point of view. It follows from work by Endo, Itoh, and Taniyama that if L is a prime link with crossing number at most 5, then there is an algorithm that answers this question in polynomial time. We show that the same holds for all torus links T2,m and all twist knots.
A plane drawing of a graph is cylindrical if there exist two concentric circles that contain all the vertices of the graph, and no edge intersects (other than at its endpoints) any of these circles. The cylindrical crossing number of a graph \(G\) is the minimum number of crossings in a cylindrical drawing of \(G\). In his influential survey on the variants of the definition of the crossing number of a graph, Schaefer lists the complexity of computing the cylindrical crossing number of a graph as an open question. In this paper, we prove that the problem of deciding whether a given graph admits a cylindrical embedding is NP-complete, and as a consequence we show that the \(t\)-cylindrical crossing number problem is also NP-complete. Moreover, we show an analogous result for the natural generalization of the cylindrical crossing number, namely the \(t\)-crossing number.
It is known that cyclic arrangements are the only unavoidable simple arrangements of pseudolines: for each fixed m ≥ 1, every sufficiently large simple arrangement of pseudolines has a cyclic subarrangement of size m. In the same spirit, we show that there are three unavoidable arrangements of pseudocircles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.