Soil biological activity has important implications for soil carbon (C) sequestration. However, very little is known about the environmental factors, particularly the effect of soil mineralogy on availability of C for soil microorganisms. In this study, we have investigated the influences of soil type (clay mineralogy) on C mineralization and its effects on biological activity at different levels of soil organic matter stability. Two soils an allophanic, derived from recent volcanic ash and a kaolinitic, resulting from metamorphic parent materials were physically fractioned in to light (LF, coarse sand 250-2000 µm), intermediate (IF, fine sand53-250 µm) and mineral (MF, silt and clay < 53 µm) fractions. Several biological and biochemical analyses at Ah horizons of mineral soil and physical fractions were conducted: soil respiration, enzymatic activities, carbohydrates and microbial biomass, amongst others soil variables. The results indicated that the bulk soil and physical fractions had a significant impact on cumulative C mineralized after 30 days of incubation and soil enzyme activities. More than 76% of total C-CO 2 variation was explained by stepwise multiple regression analysis including factors such as soil enzymes (β-glucosidase, dehydrogenase and phosphatase) and inorganic P. Soil ATP extraction was a good indicator of microbial activity, because of a positive and significant correlation among ATP and i) C-CO 2 and ii) metabolic quotient (soil respiration rate divided by microbial biomass). We also found an inverse and significant relationship between Al pyrophosphate (Al bound to SOM) and the C-CO 2 in volcanic soil, whereas the same correlation did not occur in kaolinitic soil. Our results confirmed a greater stabilization capacityof MF in allophanic than in kaolinitic soils due to the amorphous minerals clay materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.