Vitamin B micronutrients are essential regulators of one carbon metabolism that ensures human health. Vitamin B9, or folate, lies at the heart of the folate cycle and converges with the methionine cycle to complete the one carbon pathway. Additionally, vitamin B6 contributes by orchestrating the flux of one carbon cycling. Dysregulation of vitamin B contributes to altered biochemical signaling that manifests in a spectrum of human diseases. This review presents an analysis of the past, present, and future work, highlighting the interplay between folate and vitamin B6 in one carbon metabolism. Emerging insights include advances in metabolomic-based mass spectrometry and the use of live-cell metabolic labeling. Cancer is used as a focal point to dissect vitamin crosstalk and highlight new insights into the roles of folate and vitamin B6 in metabolic control. This collection of vitamin-based research detailing the trends of one carbon metabolism in human disease exemplifies how the future of personalized medicine could unfold using this new base of knowledge and ultimately provide next-generation therapeutics.
A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.