Inhibitory neurotransmission plays a key role in anxiety disorders, as evidenced by the anxiolytic effect of the benzodiazepine class of γ-aminobutyric acid (GABA) receptor agonists and the recent discovery of anxiety-associated variants in the molecular components of inhibitory synapses. Accordingly, substantial interest has focused on understanding how inhibitory neurons and synapses contribute to the circuitry underlying adaptive and pathological anxiety behaviors. A key element of the anxiety circuitry is the amygdala, which integrates information from cortical and thalamic sensory inputs to generate fear and anxiety-related behavioral outputs. Information processing within the amygdala is heavily dependent on inhibitory control, although the specific mechanisms by which amygdala GABAergic neurons and synapses regulate anxiety-related behaviors are only beginning to be uncovered. Here, we summarize the current state of knowledge and highlight open questions regarding the role of inhibition in the amygdala anxiety circuitry. We discuss the inhibitory neuron subtypes that contribute to the processing of anxiety information in the basolateral and central amygdala, as well as the molecular determinants, such as GABA receptors and synapse organizer proteins, that shape inhibitory synaptic transmission within the anxiety circuitry. Finally, we conclude with an overview of current and future approaches for converting this knowledge into successful treatment strategies for anxiety disorders.
Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies.
Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.
Cofilin-1 protein, which main function is to regulate actin cytoskeleton dynamics, appears to be involved with many steps in the neurotoxicity processes found in neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the dynamics of actin filaments play a major role in several cellular processes, the primary involvement of cofilin-1 dysfunctions in the pathophysiology of these disorders may be related to a cytoskeleton stress. However, recently cofilin-1 has also been related to other biological processes such as cell death by apoptosis. In both cases, ATP depletion associated with the presence of reactive species and other stressors regulate cofilin-1 by inducing the formation of aggregates composed primarily by actin and cofilin-1, known as cofilin/actin rods. These structures seem to be formed initially as a neuroprotective response to mitochondrial damage; but once the stressor persists they are thought to act as inducers of further impairments and loss of neuronal functions. Therefore, here we provide a brief overview of the current knowledge about the central role of cofilin/actin rods formation, where its dysregulation and malfunction might be the trigger to neurodegeneration.
Inhibitory synaptic transmission plays a key role in the circuits underlying anxiety behaviors, but the network mechanisms by which disruptions in synaptic inhibition contribute to pathological anxiety processing remain largely unknown. Here we addressed this question in mice lacking the inhibitory synapse-specific adhesion protein Neuroligin-2 (Nlgn2), which display widespread reduction in inhibitory synaptic transmission as well as a pronounced anxiety phenotype. To investigate how the lack of synaptic inhibition alters the communication between key brain regions in anxiety processing, we recorded local field potentials (LFPs) simultaneously from a network of brain regions involved in anxiety processing, including the basolateral amygdala (BLA), centromedial amygdala, bed nucleus of the stria terminalis, prefrontal cortex and ventral hippocampus (vHPC). We found that LFP power in the vHPC was profoundly increased while vHPC-directed theta frequency synchrony was disrupted in Nlgn2 KO mice under anxiogenic conditions. Instead, deletion of Nlgn2 increased beta frequency synchrony across the anxiety network, and the theta / beta synchrony ratio strongly predicted anxiety behaviors in an open field paradigm. Local deletion of Nlgn2 in the vHPC and BLA revealed that they encode distinct aspects of the anxiety phenotype of the Nlgn2 KO mice, with vHPC linked to anxiety induced freezing and BLA linked to reduction in exploratory activity.Together, our data demonstrate that alterations in long-range functional connectivity link synaptic inhibition to abnormal anxiety behaviors, and that Nlgn2 KO mice represent an interesting model to study the role of inhibitory synaptic transmission in the circuits underlying anxiety disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.