The acute phase of the inflammatory response involves an increase in the concentrations of different plasma proteins that include fibrinogen (Fbg) and multiple proinflammatory mediators. In parallel, neutrophil activation is thought to play a crucial role in several inflammatory conditions, and it has been recently demonstrated that Fbg specifically binds to the α-subunit of CD11b/CD18 on neutrophil surface. Although several reports have shown that CD11b engagement modulates neutrophil responses, the effect of human Fbg (hFbg), one of CD11b physiologic ligands, has not been exhaustively investigated. We have now shown that incubation of purified neutrophils with hFbg induces a transient and rapid elevation of free intracellular Ca2+. This early intracellular signal is accompanied by changes in the expression of neutrophil activation markers, including enhancement of CD11b and CD66b, and down-regulation of FcγRIII. In addition, we have evaluated the effect of hFbg on two functional events related to expression and resolution of inflammation: cytotoxic capacity and rate of neutrophil apoptosis. We have found that activation of neutrophils by hFbg resulted in both enhancement of phagocytosis and Ab-dependent cellular cytotoxicity, and delay of apoptosis. We conclude that during inflammatory processes, soluble Fbg could influence neutrophil responses, increasing and prolonging their functional capacity.
Galectin-3 (Gal-3), a member of a family of highly conserved carbohydrate-binding proteins, has recently emerged as a novel cellular modulator at inflammatory foci. Here we investigated the effects of Gal-3 on central effector functions of human neutrophils, including phagocytosis, exocytosis of secretory granules, and survival. We examined the effects of Gal-3 alone or in combination with soluble fibrinogen (sFbg), an extracellular mediator that plays a key role during the early phase of the inflammatory response through binding to integrin receptors. In addition we evaluated the intracellular signals triggered by these mediators in human neutrophils. Human neutrophils incubated with recombinant Gal-3 alone increased their phagocytic activity and CD66 surface expression. In contrast to the known antiapoptotic effect of Gal-3 on many cellular types, Gal-3 enhanced PMN apoptotic rate. Preincubation with Gal-3 primed neutrophils to the effects of sFbg, resulting in a synergistic action on degranulation. On the other hand, Gal-3 and sFbg had opposite effects on PMN survival, and the simultaneous action of both agonists partially counteracted the proapoptotic effects of Gal-3. In addition, although sFbg induced its effects through the activation of the ERKs, Gal-3 led to p38 phosphorylation. Disruption of this signaling pathway abrogated Gal-3-mediated modulation of neutrophil degranulation, phagocytosis, and apoptosis. Together, our results support the notion that Gal-3 and sFbg are two physiological mediators present at inflammatory sites that activate different components of the MAPK pathway and could be acting in concert to modulate the functionality and life span of neutrophils.
SUMMARYHaemolytic uraemic syndrome (HUS) has been closely associated with infection with a group of Shiga toxin-producing enterohaemorrhagic Eschericchia coli in young children. Shiga toxins (Stx) have been implicated as pathogenic agents of HUS by binding to the surface receptor of endothelial cells. LPS is a central product of the Gram-negative bacteria and several reports have documented that both LPS and Stx are important for disease development. In this study the reciprocal interactions between LPS and Stx2 are analysed in a mouse model. The results demonstrated that LPS was able to reduce or enhance Stx2 toxicity, depending on the dose and the timing of the injection. The involvement of the main early cytokines induced by LPS, tumour necrosis factor alpha (TNF-a) and IL-1b, in those LPS opposite effects on Stx2 toxicity was evaluated. Stx2 toxicity was enhanced by in vivo injection of murine TNF-a and low doses of murine IL-1b. However, at higher doses of IL-1b which induced corticosteroid increase in serum, Stx2 lethality was decreased. Considering that dexamethasone and IL-1b reproduce the LPS protective effects, it is suggested that endogenous corticosteroids secondary to the inflammatory response induced by LPS, mediate the protection against Stx2. It can be concluded that the fine equilibrium between proinflammatory and anti-inflammatory activities strongly influences Stx2 toxicity.
The regulation of neutrophil half-life by members of the coagulation cascade is critical for the resolution of the inflammatory response. We have demonstrated that soluble fibrinogen (sFbg) delays human neutrophil (PMN) apoptosis through a mechanism that involves CD11b interactions, and phosphorylation of focal adhesion kinase (FAK) and extracellular signalregulated kinase 1/2 (ERK1/2). Since NF-‹ B is a key element in the regulation of apoptotic mechanisms in several immune cells, we investigated whether NF-‹ B is involved in the control of PMN survival by sFbg. We show that sFbg triggers inhibitor protein ‹ B (I ‹ B- § ) degradation and NF-‹ B activation. Furthermore, pharmacological inhibition of NF-‹ B abrogates sFbg effects on apoptosis. In addition, specific inhibition of MAPK ERK1/2 significantly reduces NF-‹ B translocation by sFbg, suggesting a relationship between ERK1/2 and NF-‹ B activation. Similar results are obtained when granulocytic-differentiated HL-60 cells are treated with sFbg, making this model highly attractive for integrin-induced gene expression studies. It can be concluded that NF-‹ B participates in the prevention of apoptosis induced by sFbg with the participation of MAPK ERK1/2. These results shed light on the molecular mechanisms that control human granulocyte apoptosis, and suggest that NF-‹ B regulation may be of benefit for the resolution of the inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.