In vivo reprogramming of glia into functional neurons emerges as potential regeneration-based therapeutics for neural injuries or neurological diseases. Recent studies show that AAV-based manipulation of certain factors can rapidly and highly efficiently convert resident glia into functional neurons with brain region-specificity and precise connectivity. Using NEUROD1 as an example, we here show that the presumed astrocytes-converted neurons are essentially endogenous neurons in the adult mouse brain. AAV-mediated co-expression of NEUROD1 and a reporter indeed specifically, rapidly, and efficiently induces numerous reporter-labeled neurons. However, these neurons cannot be traced back to quiescent or reactive astrocytes by using stringent lineage-mapping strategies. Conversely, reporter-labeled neurons cannot be detected when NEUROD1 is strictly expressed in adult brain astrocytes. Through a retrograde labeling approach, our results rather reveal that endogenous neurons are the cell source for NEUROD1-induced reporter-labeled neurons. These results underline the indispensable value of stringent lineage-tracing strategies and beg for cautious interpretation of the in vivo reprogramming phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.