The final enzymes in the biosynthesis of aldosterone and cortisol are by the cytochrome P450 CYP11B2 and CYP11B1, respectively. The enzymes are 93% homologous at the amino acid level and specific antibodies have been difficult to generate.
Mice and rats were immunized with multiple peptides conjugated to various immunogenic proteins and monoclonal antibodies were generated. The only peptide sequences that generated specific antibodies were amino acids 41-52 for the CYP11B2 and amino acids 80-90 for the CYP11B1 enzyme.
The mouse monoclonal CYP11B2-41 was specific and sensitive for use in western blots and produced specific staining of the zona glomerulosa of normal adrenal glands. The rat monoclonal CYP11B1-80 also detected a single band by western blot and detected only the zona fasciculata. Triple immunofluorescence of the adrenal demonstrated that the CYP11B1 and the CYP11B2 did not co-localize, while as expected the CYP11B1 co-localized with the 17α-hydroxylase.
CYP11B1 and CYP11B2 play pivotal roles in adrenocorticosteroids synthesis. We performed semi-quantitative immunohistochemical analysis of these proteins in adrenals from patients with primary aldosteronism using novel monoclonal antibodies. Clusters of cortical cells positive for CYP11B2 were detected in the zona glomerulosa (ZG) of normal adrenal gland (NA), idiopathic hyperaldosteronism (IHA) and the adjacent adrenal of aldosterone-producing adenoma (APA). In APA, heterogenous immunolocalization of CYP11B2 and diffuse immunoreactivity of CYP11B1 were detected in tumor cells, respectively. The relative immunoreactivity of CYP11B2 in the ZG of adjacent adrenal of APA was significantly lower than that of NA, IHA and APA tumor cells, suggestive of suppressed aldosterone biosynthesis in these cells. These findings did indicate the regulatory mechanisms of aldosterone biosynthesis were different between normal/hyperplastic and neoplastic aldosterone-producing cells in human adrenals. CYP11B2 immunoreactivity in the ZG could also serve as a potential immunohistochemical marker differentiating morphologically hyperplastic ZG of IHA and APA adjacent adrenal.
These data support a probable pathophysiological role for AT1R autoantibodies in PA and thereby raise important etiological and therapeutic implications.
Summary
The G-protein-activated inwardly rectifying potassium channel Kir3.4 is expressed in the zona glomerulosa cell membrane and transports potassium out of the cell.
Angiotensin II stimulation of aldosterone secretion is mediated in part by suppression of the transcription of KCNJ5, the gene coding for Kir3.4, and blocking channel activity. This results in membrane depolarization, mobilization of intracellular calcium, activation of the calcium-calmodulin pathway, and increasing gene transcription of steroidogenic enzymes required for aldosterone secretion.
In 40–60% of aldosterone-producing adenomas there is a somatic mutation in the region of the KCNJ5 gene that codes for the selectivity filter that decreases potassium selectivity, allowing sodium to leak into the cells, thus depolarizing the membrane and initiating events that result in increased aldosterone synthesis.
The mechanism by which mutated KCNJ5 induces cell proliferation and adenoma formation remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.