BackgroundMercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds.Methodology/Principal FindingsTo improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg2+. The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg2+, 0.12 and CH3Hg+, 0.08. The addition of Hg2+ (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg2+ addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg2+ no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg2+ showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg2+ (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h.Conclusions/SignificanceA broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation.
BackgroundCopper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized.ResultsDGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively.ConclusionsThis study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.
In recent years, Chilean kiwifruit production has been affected by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), which has caused losses to the industry. In this study, we report the genotypic and phenotypic characterization of 18 Psa isolates obtained from Chilean kiwifruits orchards between 2012 and 2016 from different geographic origins. Genetic analysis by multilocus sequence analysis (MLSA) using four housekeeping genes (gyrB, rpoD, gltA, and gapA) and the identification of type III effector genes suggest that the Chilean Psa isolates belong to the Psa Biovar 3 cluster. All of the isolates were highly homogenous in regard to their phenotypic characteristics. None of the isolates were able to form biofilms over solid plastic surfaces. However, all of the isolates formed cellular aggregates in the air–liquid interface. All of the isolates, except for Psa 889, demonstrated swimming motility, while only isolate Psa 510 demonstrated swarming motility. The biochemical profiles of the isolates revealed differences in 22% of the tests in at least one Psa isolate when analyzed with the BIOLOG system. Interestingly, all of the isolates were able to produce indole using a tryptophan-dependent pathway. PCR analysis revealed the presence of the genes aldA/aldB and iaaL/matE, which are associated with the production of indole-3-acetic acid (IAA) and indole-3-acetyl-3-L-lysine (IAA-Lys), respectively, in P. syringae. In addition, IAA was detected in the cell free supernatant of a representative Chilean Psa strain. This work represents the most extensive analysis in terms of the time and geographic origin of Chilean Psa isolates. To our knowledge, this is the first report of Psa being able to produce IAA. Further studies are needed to determine the potential role of IAA in the virulence of Psa during kiwifruit infections and whether this feature is observed in other Psa biovars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.