In snowboarding, the wrist is the most common injury site, as snowboarders often put their arms out to cushion a fall. This can result in a compressive load through the carpals coupled with wrist hyperextension, leading to ligament sprains or carpal and forearm bone fractures. Wrist protectors are worn by snowboarders in an effort to reduce injury risk, by decreasing peak impact forces and limiting wrist extension to prevent hyperextension during falls. There is no international standard or universally accepted performance specification that snowboarding wrist protectors should conform to, resulting in an inability to judge which designs offer the best protection. This study investigated how surrogate arm design affected the stiffness of wrist protectors during quasi-static mechanical testing. Three surrogate arms with increasing design complexity were used to test three wrist protectors. The results show that surrogate design does influence the stiffness of snowboarding wrist protectors. Given that the surrogate does influence protector performance, it is recommended that a standard surrogate design is established for research and product testing.
The wrist is a common injury site for snowboarders who often fall onto an outstretched hand. Wrist protectors are worn by some snowboarders to prevent wrist injuries by attenuating impact forces and limiting wrist extension. This paper presents a bespoke pendulum test device for impacting wrist protectors when fitted to a wrist surrogate. The rig can replicate injury risk scenarios, while measuring temporal forces and wrist extension angles. Results from testing 12 snowboarding wrist protectors are presented, including differences in peak vertical force, the time to reach this peak, and energy absorption between products. When compared to an unprotected surrogate, all 12 products lowered the peak force by at least 24% and increased the time to reach this peak by at least 1.8 times. Due to the severity of the load case employed, none of the products lowered the impact force below 2.8 kN, which is the value presented in the literature to fracture a cadaveric wrist. The developed rig could be used to support the development of new wrist protectors, as well as the development of finite element models for predicting wrist protector performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.