Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. More than 30% of patients develop lung metastasis, which is the leading cause of mortality. Recently, the extracellular matrix protein Cyr61 has been recognized as a malignancy promoting protein in OS mouse model with prognostic potential in human OS. In this study, we aimed at the identification of novel Cyr61-interacting proteins. Here we report that Cyr61 associates with Caprin-1, and confocal microscopy showed that stable ectopic expression of Caprin-1 leads to the formation of stress granules containing Caprin-1 and Cyr61, confers resistance to cisplatin-induced apoptosis, and resulted in constitutive phosphorylation of Akt and ERK1/2. Importantly, ectopic expression of Caprin-1 dramatically enhanced primary tumor growth, remarkably increased lung metastatic load in a SCID intratibial OS mouse model, and decreased significantly (p<0.0018) the survival of the mice. Although Caprin-1 expression, evaluated with a tissue microarray including samples from 59 OS patients, failed to be an independent predictor for the patients' outcome in this limited cohort of patients, increased Caprin-1 expression indicated a tendency to shortened overall survival, and more strikingly, Cyr61/Caprin-1 co-expression was associated with worse survival than that observed for patients with tumors expressing either Cyr61 or Caprin-1 alone or none of these proteins. The findings imply that Caprin-1 may have a metastasis promoting role in OS and show that through resistance to apoptosis and via the activation of Akt and ERK1/2 pathways, Caprin-1 is significantly involved in the development of OS metastasis.
These findings provide the fundament to initiate successful first in vivo evaluations opening metal nanomagnets with improved magnetic properties to fascinating applications in nanomedicine.
Summary
Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson’s disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is
ITGA8
, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.
This study highlights the importance of relevant exposure scenarios accounting for physiological conditions when studying particle-cell interactions as, for example, shear stress and endothelial activation are major determinants of particle uptake. Such considerations are of particular importance with regard to successful translation of in vitro findings into (pre-)clinical end points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.