Epstein-Barr virus (EBV) has been associated with serious or fatal lymphoproliferative disease in immunocompromised patients. EBV nuclear protein 2 and latent membrane protein are characteristically expressed in B lymphocytes proliferating in vitro in response to growth transformation by EBV. These two proteins are thought to be effectors of lymphocyte growth since they increase the expression of B-lymphocyte activation (CD23) and cell-adhesion (LFA 3 and ICAM 1) molecules in vitro. Using monoclonal antibody-immune microscopy, we have demonstrated that these two EBV proteins and their associated B-lymphocyte activation or adhesion molecules are expressed in the infiltrating B lymphocytes in immunocompromised patients with EBV lymphoproliferative disease. These monoclonal antibodies should be useful in the early diagnosis of EBV lymphoproliferative disease and in distinguishing it from other B-lymphocyte cancers associated with EBV, such as Burkitt's lymphoma. The finding of EBV nuclear protein 2 and latent membrane protein and their associated activation or adhesion molecules provides a further pathophysiologic link between EBV and the proliferation of B lymphocytes in immunocompromised patients.
BackgroundThe 2’-5’ oligoadenylate synthetase (OAS) locus encodes for three OAS enzymes (OAS1-3) involved in innate immune response. This region harbors high amounts of Neandertal ancestry in non-African populations; yet, strong evidence of positive selection in the OAS region is still lacking.ResultsHere we used a broad array of selection tests in concert with neutral coalescent simulations to demonstrate a signal of adaptive introgression at the OAS locus. Furthermore, we characterized the functional consequences of the Neandertal haplotype in the transcriptional regulation of OAS genes at baseline and infected conditions. We found that cells from people with the Neandertal-like haplotype express lower levels of OAS3 upon infection, as well as distinct isoforms of OAS1 and OAS2.ConclusionsWe present evidence that a Neandertal haplotype at the OAS locus was subjected to positive selection in the human population. This haplotype is significantly associated with functional consequences at the level of transcriptional regulation of innate immune responses. Notably, we suggest that the Neandertal-introgressed haplotype likely reintroduced an ancestral splice variant of OAS1 encoding a more active protein, suggesting that adaptive introgression occurred as a means to resurrect adaptive variation that had been lost outside Africa.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1098-6) contains supplementary material, which is available to authorized users.
Transplant patients are at particular risk for developing post-transplant lymphoproliferative disease (PTLD) following administration of immunosuppressive therapy. In many cases the PTLD lesions express Epstein-Barr virus (EBV) latent and lytic genes as well as elevated levels of host cytokines. An outline of the potential contributions of EBV, host cytokines and T cells, and the immunosuppressive cyclosporine A, tacrolimus, and anti-CD3 antibody in the mechanism and pathogenesis of this disease is presented and discussed.
Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient’s response to COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.