Although elevated activity of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) has been proposed to mediate comorbid depression in inflammatory disorders, its causative role has never been tested. We report that peripheral administration of lipopolysaccharide (LPS) activates IDO and culminates in a distinct depressive-like behavioral syndrome, measured by increased duration of immobility in both the forced-swim and tail suspension tests. Blockade of IDO activation either indirectly with the anti-inflammatory tetracycline derivative minocycline, that attenuates LPS-induced expression of proinflammatory cytokines, or directly with the IDO antagonist 1-methyltryptophan (1-MT), prevents development of depressive-like behavior. Both minocycline and 1-MT normalize the kynurenine/tryptophan ratio in the plasma and brain of LPS-treated mice without changing the LPS-induced increase in turnover of brain serotonin. Administration of L-kynurenine, a metabolite of tryptophan that is generated by IDO, to naive mice dose dependently induces depressive-like behavior. These results implicate IDO as a critical molecular mediator of inflammation-induced depressive-like behavior, probably through the catabolism of tryptophan along the kynurenine pathway.
Chronic inflammation activates the tryptophan-degrading enzyme IDO, which is well known to impair T cell proliferation. We have previously established that bacille Calmette-Guérin (BCG), an attenuated form of Mycobacterium bovis, is associated with persistent activation of IDO in the brain and chronic depressive-like behavior, but a causative role has not been established. In these experiments we used both pharmacologic and genetic approaches to test the hypothesis that IDO activation is responsible for the development of chronic depression that follows BCG infection. BCG induced TNF-α, IFN-γ, and IDO mRNA steady-state transcripts in the brain as well as the enzyme 3-hydroxyanthranilic acid oxygenase (3-HAO) that lies downstream of IDO and generates the neuroactive metabolite, quinolinic acid. Behaviors characteristic of depression were apparent 1 wk after BCG infection. Pretreatment with the competitive IDO inhibitor 1-methyltryptophan fully blocked BCG-induced depressive-like behaviors. Importantly, IDO-deficient mice were completely resistant to BCG-induced depressive-like behavior but responded normally to BCG induction of proinflammatory cytokines. These results are the first to prove that the BCG-induced persistent activation of IDO is accompanied by the induction of 3-hydroxyanthranilic acid oxygenase and that IDO is required as an initial step for the subsequent development of chronic depressive-like behavior.
Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.