In conclusion, in humans, the liver secretes follistatin at rest and during exercise, and the glucagon-to-insulin ratio is a key determinant of circulating follistatin levels. Circulating follistatin may be a marker of the glucagon-to-insulin tone on the liver.
Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II.
Understanding the organisation and role of the extracellular matrix (ECM) in islets of Langerhans is critical for maintaining pancreatic β-cells, and to recognise and revert the physiopathology of diabetes. Indeed, integrin-mediated adhesion signalling in response to the pancreatic ECM plays crucial roles in β-cell survival and insulin secretion, two major functions, which are affected in diabetes. Here, we would like to present an update on the major components of the pancreatic ECM, their role during integrin-mediated cell-matrix adhesions and how they are affected during diabetes. To treat diabetes, a promising approach consists in replacing β-cells by transplantation. However, efficiency is low, because β-cells suffer of anoikis, due to enzymatic digestion of the pancreatic ECM, which affects the survival of insulin-secreting β-cells. The strategy of adding ECM components during transplantation, to reproduce the pancreatic microenvironment, is a challenging task, as many of the regulatory mechanisms that control ECM deposition and turnover are not sufficiently understood. A better comprehension of the impact of the ECM on the adhesion and integrin-dependent signalling in β-cells is primordial to improve the healthy state of islets to prevent the onset of diabetes as well as for enhancing the efficiency of the islet transplantation therapy.
Actin and focal adhesion (FA) remodelling are essential for glucose-stimulated insulin secretion (GSIS). Non-muscle myosin II (NM II) isoforms have been implicated in such remodelling in other cell types, and myosin light chain kinase (MLCK) and Rho-associated coiled-coil-containing kinase (ROCK) are upstream regulators of NM II, which is known to be involved in GSIS. The aim of this work was to elucidate the implication and regulation of NM IIA and IIB in beta cell actin and FA remodelling, granule trafficking and GSIS
Background: Molecular mechanisms involved in beneficial effects of IL-1 on beta cell function are poorly understood. Results: Short exposure of beta cells to low concentrations of IL-1 enhanced stimulated insulin secretion through focal adhesion, actin remodeling, and transcription. Conclusion: The beneficial effects of IL-1 occur at multiple molecular levels. Significance: IL-1 has opposing effects on beta cells depending on time of exposure and concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.