Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways.
The prevailing view is that recreational methamphetamine use causes a broad range of severe cognitive deficits, despite the fact that concerns have been raised about interpretations drawn from the published literature. This article addresses an important gap in our knowledge by providing a critical review of findings from recent research investigating the impact of recreational methamphetamine use on human cognition. Included in the discussion are findings from studies that have assessed the acute and long-term effects of methamphetamine on several domains of cognition, including visuospatial perception, attention, inhibition, working memory, long-term memory, and learning. In addition, relevant neuroimaging data are reviewed in an effort to better understand neural mechanisms underlying methamphetamine-related effects on cognitive functioning. In general, the data on acute effects show that methamphetamine improves cognitive performance in selected domains, that is, visuospatial perception, attention, and inhibition. Regarding long-term effects on cognitive performance and brain-imaging measures, statistically significant differences between methamphetamine users and control participants have been observed on a minority of measures. More importantly, however, the clinical significance of these findings may be limited because cognitive functioning overwhelmingly falls within the normal range when compared against normative data. In spite of these observations, there seems to be a propensity to interpret any cognitive and/or brain difference(s) as a clinically significant abnormality. The implications of this situation are multiple, with consequences for scientific research, substance-abuse treatment, and public policy.
Curiosity drives information seeking and promotes learning. Prior work has focused on how curiosity is elicited by intrinsic qualities of information, leaving open questions about how curiosity, exploration, and learning are shaped by the environment. Here we examine how temporal dynamics of the learning environment shape curiosity and learning. Participants (n = 71) foraged for the answer to trivia questions in two conditions that differed only in their temporal statistics. In one condition, the timing of information delivery followed a uniform distribution, while in another it followed a heavy-tailed distribution. We found that the two conditions elicited distinct responses in both behavior and pupil dilation: participants were more likely to wait for information and to later remember it in the uniform distribution. By contrast, participants showed greater surprise, evidenced in a spike in pupil dilation, when presented with the answers in the heavy-tailed distribution. Furthermore, pupil dilation was inversely related to curiosity and memory, suggesting that temporal uncertainty may interfere with the positive effects of curiosity on learning. Our findings demonstrate that the predicted timing of information delivery influences information seeking, memory, and physiological arousal, suggesting that information is best learned when it is both intrinsically interesting and presented within a temporally predictable environment.
The COVID-19 pandemic has highlighted the importance of understanding and managing information seeking behavior. Information-seeking in humans is often viewed as irrational rather than utility maximizing. Here, we hypothesized that this apparent disconnect between utility and information-seeking is due to a latent third variable, motivation. We quantified information-seeking, learning, and COVID-19-related concern (which we used as a proxy for motivation regarding COVID-19 and the changes in circumstance it caused) in a US-based sample (n = 5376) during spring 2020. We found that self-reported levels of COVID-19 concern were associated with directed seeking of COVID-19-related content and better memory for such information. Interestingly, this specific motivational state was also associated with a general enhancement of information-seeking for content unrelated to COVID-19. These effects were associated with commensurate changes to utility expectations and were dissociable from the influence of non-specific anxiety. Thus, motivation both directs and energizes epistemic behavior, linking together utility and curiosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.